Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 α subunit

被引:245
作者
Barry, DM
Xu, HD
Schuessler, RB
Nerbonne, JM
机构
[1] Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Surg, St Louis, MO 63110 USA
关键词
transgenic mouse; transient outward current; ventricle; action potential; long QT;
D O I
10.1161/01.RES.83.5.560
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A novel in vivo experimental strategy, involving cell type-specific expression of a dominant-negative K+ channel pore-forming alpha subunit, was developed and exploited to probe the molecular identity of the cardiac transient outward K+ current (I-to). A point mutation (W to F) was introduced at position 362 in the pore region of Kv4.2 to produce a nonconducting mutant (Kv4.2W362F) subunit. Coexpression of Kv4.2W362F with Kv4.2 (or Kv4.3) attenuates the wild-type currents, and the effect is subfamily specific, ie, Kv4.2W362F does not affect heterologously expressed Kv1.4 currents. With the use of the alpha-myosin heavy chain promoter to direct cardiac-specific expression, several lines of Kv4.2W362F transgenic mice were generated. Electrophysiological recordings reveal that I-to is selectively eliminated in ventricular myocytes isolated from transgenic mice expressing Kv4.3W362F, thereby demonstrating directly that the Kv 4 subfamily underlies I-to in the mammalian heart. Functional knockout of I-to leads to marked increases in action potential durations in ventricular myocytes and to prolongation of the QT interval in surface ECG recordings. In addition, a novel rapidly activating and inactivating K+ current, which is not detectable in myocytes from nontransgenic littermates, is evident in Kv4.2W362F-expressing ventricular cells. Importantly, these results demonstrate that electrical remodeling occurs in the heart when the expression of endogenous K+ channels is altered.
引用
收藏
页码:560 / 567
页数:8
相关论文
共 34 条
[1]   K(v)LQT1 and IsK (minK) proteins associate to form the I-Ks cardiac potassium current [J].
Barhanin, J ;
Lesage, F ;
Guillemare, E ;
Fink, M ;
Lazdunski, M ;
Romey, G .
NATURE, 1996, 384 (6604) :78-80
[2]   DIFFERENTIAL EXPRESSION OF VOLTAGE-GATED K+ CHANNEL SUBUNITS IN ADULT-RAT HEART - RELATION TO FUNCTIONAL K+ CHANNELS [J].
BARRY, DM ;
TRIMMER, JS ;
MERLIE, JP ;
NERBONNE, JM .
CIRCULATION RESEARCH, 1995, 77 (02) :361-369
[3]   Myocardial potassium channels: Electrophysiological and molecular diversity [J].
Barry, DM ;
Nerbonne, JM .
ANNUAL REVIEW OF PHYSIOLOGY, 1996, 58 :363-394
[4]  
CAMPBELL DL, 1995, CARDIAC ELECTROPHYSI, P83
[5]   SHAKER, SHAL, SHAB, AND SHAW EXPRESS INDEPENDENT K+ CURRENT SYSTEMS [J].
COVARRUBIAS, M ;
WEI, A ;
SALKOFF, L .
NEURON, 1991, 7 (05) :763-773
[6]   A MOLECULAR-BASIS FOR CARDIAC-ARRHYTHMIA - HERG MUTATIONS CAUSE LONG QT SYNDROME [J].
CURRAN, ME ;
SPLAWSKI, I ;
TIMOTHY, KW ;
VINCENT, GM ;
GREEN, ED ;
KEATING, MT .
CELL, 1995, 80 (05) :795-803
[7]   Role of the Kv4.3 K+ channel in ventricular muscle - A molecular correlate for the transient outward current [J].
Dixon, JE ;
Shi, WM ;
Wang, HS ;
McDonald, C ;
Yu, H ;
Wymore, RS ;
Cohen, IS ;
McKinnon, D .
CIRCULATION RESEARCH, 1996, 79 (04) :659-668
[8]   QUANTITATIVE-ANALYSIS OF POTASSIUM CHANNEL MESSENGER-RNA EXPRESSION IN ATRIAL AND VENTRICULAR MUSCLE OF RATS [J].
DIXON, JE ;
MCKINNON, D .
CIRCULATION RESEARCH, 1994, 75 (02) :252-260
[9]   A rapidly activating sustained K+ current modulates repolarization and excitation-contraction coupling in adult mouse ventricle [J].
Fiset, C ;
Clark, RB ;
Larsen, TS ;
Giles, WR .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 504 (03) :557-563
[10]   Shal-type channels contribute to the Ca2+-independent transient outward K+ current in rat ventricle [J].
Fiset, C ;
Clark, RB ;
Shimoni, Y ;
Giles, WR .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 500 (01) :51-64