Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 α subunit

被引:245
作者
Barry, DM
Xu, HD
Schuessler, RB
Nerbonne, JM
机构
[1] Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Surg, St Louis, MO 63110 USA
关键词
transgenic mouse; transient outward current; ventricle; action potential; long QT;
D O I
10.1161/01.RES.83.5.560
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A novel in vivo experimental strategy, involving cell type-specific expression of a dominant-negative K+ channel pore-forming alpha subunit, was developed and exploited to probe the molecular identity of the cardiac transient outward K+ current (I-to). A point mutation (W to F) was introduced at position 362 in the pore region of Kv4.2 to produce a nonconducting mutant (Kv4.2W362F) subunit. Coexpression of Kv4.2W362F with Kv4.2 (or Kv4.3) attenuates the wild-type currents, and the effect is subfamily specific, ie, Kv4.2W362F does not affect heterologously expressed Kv1.4 currents. With the use of the alpha-myosin heavy chain promoter to direct cardiac-specific expression, several lines of Kv4.2W362F transgenic mice were generated. Electrophysiological recordings reveal that I-to is selectively eliminated in ventricular myocytes isolated from transgenic mice expressing Kv4.3W362F, thereby demonstrating directly that the Kv 4 subfamily underlies I-to in the mammalian heart. Functional knockout of I-to leads to marked increases in action potential durations in ventricular myocytes and to prolongation of the QT interval in surface ECG recordings. In addition, a novel rapidly activating and inactivating K+ current, which is not detectable in myocytes from nontransgenic littermates, is evident in Kv4.2W362F-expressing ventricular cells. Importantly, these results demonstrate that electrical remodeling occurs in the heart when the expression of endogenous K+ channels is altered.
引用
收藏
页码:560 / 567
页数:8
相关论文
共 34 条
  • [1] K(v)LQT1 and IsK (minK) proteins associate to form the I-Ks cardiac potassium current
    Barhanin, J
    Lesage, F
    Guillemare, E
    Fink, M
    Lazdunski, M
    Romey, G
    [J]. NATURE, 1996, 384 (6604) : 78 - 80
  • [2] DIFFERENTIAL EXPRESSION OF VOLTAGE-GATED K+ CHANNEL SUBUNITS IN ADULT-RAT HEART - RELATION TO FUNCTIONAL K+ CHANNELS
    BARRY, DM
    TRIMMER, JS
    MERLIE, JP
    NERBONNE, JM
    [J]. CIRCULATION RESEARCH, 1995, 77 (02) : 361 - 369
  • [3] Myocardial potassium channels: Electrophysiological and molecular diversity
    Barry, DM
    Nerbonne, JM
    [J]. ANNUAL REVIEW OF PHYSIOLOGY, 1996, 58 : 363 - 394
  • [4] CAMPBELL DL, 1995, CARDIAC ELECTROPHYSI, P83
  • [5] SHAKER, SHAL, SHAB, AND SHAW EXPRESS INDEPENDENT K+ CURRENT SYSTEMS
    COVARRUBIAS, M
    WEI, A
    SALKOFF, L
    [J]. NEURON, 1991, 7 (05) : 763 - 773
  • [6] A MOLECULAR-BASIS FOR CARDIAC-ARRHYTHMIA - HERG MUTATIONS CAUSE LONG QT SYNDROME
    CURRAN, ME
    SPLAWSKI, I
    TIMOTHY, KW
    VINCENT, GM
    GREEN, ED
    KEATING, MT
    [J]. CELL, 1995, 80 (05) : 795 - 803
  • [7] Role of the Kv4.3 K+ channel in ventricular muscle - A molecular correlate for the transient outward current
    Dixon, JE
    Shi, WM
    Wang, HS
    McDonald, C
    Yu, H
    Wymore, RS
    Cohen, IS
    McKinnon, D
    [J]. CIRCULATION RESEARCH, 1996, 79 (04) : 659 - 668
  • [8] QUANTITATIVE-ANALYSIS OF POTASSIUM CHANNEL MESSENGER-RNA EXPRESSION IN ATRIAL AND VENTRICULAR MUSCLE OF RATS
    DIXON, JE
    MCKINNON, D
    [J]. CIRCULATION RESEARCH, 1994, 75 (02) : 252 - 260
  • [9] A rapidly activating sustained K+ current modulates repolarization and excitation-contraction coupling in adult mouse ventricle
    Fiset, C
    Clark, RB
    Larsen, TS
    Giles, WR
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1997, 504 (03): : 557 - 563
  • [10] Shal-type channels contribute to the Ca2+-independent transient outward K+ current in rat ventricle
    Fiset, C
    Clark, RB
    Shimoni, Y
    Giles, WR
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1997, 500 (01): : 51 - 64