Strong approximations of bivariate uniform empirical processes

被引:16
作者
Castelle, N [1 ]
Laurent-Bonvalot, F [1 ]
机构
[1] Univ Paris Sud, URA 743, F-91405 Orsay, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 1998年 / 34卷 / 04期
关键词
D O I
10.1016/S0246-0203(98)80024-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In 1975, Komlos, Major and Tusnady constructed a strong approximation of the uniform empirical process {alpha(n)(t), n greater than or equal to 1, t is an element of [0, 1]} by a Gaussian Kiefer process. We show that the global error bound provided by Komlos, Major and Tusnady may be improved by considering only local approximation. Moreover we provide explicit constants. We also prove a local refinement for Tusnady's Gaussian strong approximation of the bidimensional uniform empirical process. The main technical tool we use is a non asymptotic normal approximation of the hypergeometric distribution. (C) Elsevier, Paris.
引用
收藏
页码:425 / 480
页数:56
相关论文
共 20 条