Aperiodicity and cofinality for finitely aligned higher-rank graphs

被引:24
作者
Lewin, Peter [1 ]
Sims, Aidan [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW, Australia
基金
澳大利亚研究理事会;
关键词
C-ASTERISK-ALGEBRAS; CUNTZ-KRIEGER ALGEBRAS; SIMPLICITY;
D O I
10.1017/S0305004110000034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce new formulations of aperiodicity and cofinality for finitely aligned higher-rank graphs Lambda, and prove that C*(Lambda) is simple if and only if Lambda is aperiodic and cofinal. The main advantage of our versions of aperiodicity and cofinality over existing ones is that ours are stated in terms of finite paths. To prove our main result, we first characterise each of aperiodicity and cofinality of Lambda in terms of the ideal structure of C*(Lambda). In an appendix we show how our new cofinality condition simplifies in a number of special cases which have been treated previously in the literature; even in these settings our results are new.
引用
收藏
页码:333 / 350
页数:18
相关论文
共 32 条
  • [1] The ideal structure of the C*-algebras of infinite graphs
    Bates, T
    Hong, JH
    Raeburn, I
    Szymanski, W
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) : 1159 - 1176
  • [2] The uniqueness of Cuntz-Krieger type algebras
    Burgstaller, B
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 594 : 207 - 236
  • [3] CLASS OF CSTAR-ALGEBRAS AND TOPOLOGICAL MARKOV-CHAINS
    CUNTZ, J
    KRIEGER, W
    [J]. INVENTIONES MATHEMATICAE, 1980, 56 (03) : 251 - 268
  • [4] Atomic representations of rank 2 graph algebras
    Davidson, Kenneth R.
    Power, Stephen C.
    Yang, Dilian
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) : 819 - 853
  • [5] Interpolation in semigroupoid algebras
    Dritschel, Michael A.
    Marcantognini, Stefania
    McCullough, Scott
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 606 : 1 - 40
  • [6] Enomoto M., 1980, MATH JPN, V25, P435
  • [7] Exel R, 1999, J REINE ANGEW MATH, V512, P119
  • [8] Inverse semigroups and combinatorial C*-algebras
    Exel, Ruy
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2008, 39 (02): : 191 - 313
  • [9] Higher-rank graph C*-algebras:: An inverse semigroup and groupoid approach
    Farthing, C
    Muhly, PS
    Yeend, T
    [J]. SEMIGROUP FORUM, 2005, 71 (02) : 159 - 187
  • [10] Farthing C, 2008, J OPERAT THEOR, V60, P165