Label Filters for Large Scale Multilabel Classification

被引:0
作者
Niculescu-Mizil, Alexandru [1 ]
Abbasnejad, Ehsan [2 ]
机构
[1] NEC Labs Amer, Princeton, NJ 08540 USA
[2] Australian Natl Univ, Canberra, ACT 0200, Australia
来源
ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54 | 2017年 / 54卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When assigning labels to a test instance, most multilabel and multiclass classifiers systematically evaluate every single label to decide whether it is relevant or not. This linear scan over labels becomes prohibitive when the number of labels is very large. To alleviate this problem we propose a two step approach where computationally efficient label filters pre-select a small set of candidate labels before the base multiclass or multilabel classifier is applied. The label filters select candidate labels by projecting a test instance on a filtering line, and retaining only the labels that have training instances in the vicinity of this projection. The filter parameters are learned directly from data by solving a constraint optimization problem, and are independent of the base multilabel classifier. The proposed label filters can be used in conjunction with any multiclass or multilabel classifier that requires a linear scan over the labels, and speed up prediction by orders of magnitude without significant impact on performance.
引用
收藏
页码:1448 / 1457
页数:10
相关论文
共 29 条
  • [11] Speeding Up the Xbox Recommender System Using a Euclidean Transformation for Inner-Product Spaces
    Bachrach, Yoram
    Finkelstein, Yehuda
    Gilad-Bachrach, Ran
    Katzir, Liran
    Koenigstein, Noam
    Nice, Nir
    Paquet, Ulrich
    [J]. PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), 2014, : 257 - 264
  • [12] Baker YS, 2013, 2013 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS: BIG DATA, EMERGENT THREATS, AND DECISION-MAKING IN SECURITY INFORMATICS, P10, DOI 10.1109/ISI.2013.6578776
  • [13] MULTIDIMENSIONAL BINARY SEARCH TREES USED FOR ASSOCIATIVE SEARCHING
    BENTLEY, JL
    [J]. COMMUNICATIONS OF THE ACM, 1975, 18 (09) : 509 - 517
  • [14] Beygelzimer A, 2009, LECT NOTES ARTIF INT, V5809, P247, DOI 10.1007/978-3-642-04414-4_22
  • [15] Bhatia K, 2015, 29 ANN C NEURAL INFO, V28
  • [16] Cisse M., 2012, Machine Learning and Knowledge Discovery in Databases. Proceedings of the European Conference (ECML PKDD 2012), P506, DOI 10.1007/978-3-642-33460-3_38
  • [17] Cisse M., 2013, Advances in Neural Information Processing Systems, P1851
  • [18] On the algorithmic implementation of multiclass kernel-based vector machines
    Crammer, K
    Singer, Y
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) : 265 - 292
  • [19] Gao TS, 2011, IEEE I CONF COMP VIS, P2072, DOI 10.1109/ICCV.2011.6126481
  • [20] Indyk P., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P604, DOI 10.1145/276698.276876