Image Processing Tool Quantifying Auto-Tempered Carbides in As-Quenched Low Carbon Martensitic Steels

被引:6
作者
Babu, Shashank Ramesh [1 ]
Davis, Thomas Paul [2 ]
Haas, Tim [3 ]
Jarvenpaa, Antti [4 ]
Komi, Jukka [1 ]
Porter, David [1 ]
机构
[1] Univ Oulu, Ctr Adv Steels Res, Mat & Mech Engn, Oulun 90014, Finland
[2] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[3] Rhein Westfal TH Aachen, Dept Ind Furnaces & Heat Engn, Kopernikusstr 10, D-52074 Aachen, Germany
[4] Univ Oulu, Kerttu Saalasti Inst, Pajatie 5, FI-85500 Nivala, Finland
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
martensite; auto-tempering; image processing; quantification; carbides; MICROSTRUCTURES;
D O I
10.3390/met10020171
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As-quenched low-carbon martensitic steels (<0.2 wt.% C) contain auto-tempered carbides. Auto-tempering improves the work hardening and upper-shelf impact energy; however, an efficient characterization method to determine the degree of auto-tempering has not been available. This paper demonstrates an efficient image processing tool that calculates the relative auto-tempered carbide fraction by analyzing scanning electron microscope micrographs. By the process of image segmentation, the qualitative volume fraction of auto-tempered carbides can be determined, and an associated color map produced, which distinguished the levels of auto-tempering. This image processing tool could become useful for the optimization of new low-carbon steel's mechanical properties.
引用
收藏
页数:11
相关论文
共 16 条
[1]  
Andersson J.O., 2002, CALPHAD
[2]   Observations on the Relationship between Crystal Orientation and the Level of Auto-Tempering in an As-Quenched Martensitic Steel [J].
Babu, Shashank Ramesh ;
Nyyssonen, Tuomo ;
Jaskari, Matias ;
Jarvenpaa, Antti ;
Davis, Thomas Paul ;
Pallaspuro, Sakari ;
Komi, Jukka ;
Porter, David .
METALS, 2019, 9 (12)
[3]  
BABU SR, 2019, METALS-BASEL, V9, DOI DOI 10.3390/MET9050550
[4]  
Beranger G., 1996, BOOK STEEL
[5]  
Bhadeshia H., 2017, STEELS MICROSTRUCTUR
[6]   A new solution for automatic microstructures analysis from images based on a backpropagation artificial neural network [J].
de Albuquerque, Victor Hugo C. ;
Cortez, Paulo C. ;
de Alexandria, Auzuir R. ;
Tavares, Joao Manuel R. S. .
NONDESTRUCTIVE TESTING AND EVALUATION, 2008, 23 (04) :273-283
[7]   Microstructures and hardness of as-quenched martensites (0.1-0.5%C) [J].
Hutchinson, Bevis ;
Hagstrom, Joacim ;
Karlsson, Oskar ;
Lindell, David ;
Tornberg, Malm ;
Lindberg, Fredrik ;
Thuvander, Mattias .
ACTA MATERIALIA, 2011, 59 (14) :5845-5858
[8]   Automatic recognition of complex microstructures using the Image Classifier [J].
Komenda, J .
MATERIALS CHARACTERIZATION, 2001, 46 (2-3) :87-92
[9]  
Krauss G., 1990, Steels Heat Treatment and Processing Principles
[10]  
Krauss G., 2002, MAT SCI ENG A-STRUCT, V273-275, P40