Noncommutative homological mirror symmetry of elliptic curves

被引:0
作者
Lee, Sangwook [1 ]
机构
[1] Korea Inst Adv Study, Sch Math, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
CATEGORIES;
D O I
10.1215/21562261-2020-0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an equivalence of two A(infinity)-functors, via Orlov'sLandau-Ginzburg/ Calabi-Yau (LG/CY) correspondence. One is the Polishchuk-Zaslowmirror symmetry functor of elliptic curves, and the other is a localized mirror functor from the Fukaya category of T-2 to a category of noncommutative matrix factorizations. As a corollary, we prove that the noncommutative mirror functor LMgrLt realizes homological mirror symmetry for any t.
引用
收藏
页码:723 / 743
页数:21
相关论文
共 13 条
[1]   HOMOLOGICAL MIRROR SYMMETRY FOR THE 4-TORUS [J].
Abouzaid, Mohammed ;
Smith, Ivan .
DUKE MATHEMATICAL JOURNAL, 2010, 152 (03) :373-440
[2]  
Artin ATVdB07 M., 1990, Progr. Math., V86, P33
[3]   TWISTED HOMOGENEOUS COORDINATE RINGS [J].
ARTIN, M ;
VANDENBERGH, M .
JOURNAL OF ALGEBRA, 1990, 133 (02) :249-271
[4]  
Cho C.H., ARXIV151207128V1MATH
[5]   LOCALIZED MIRROR FUNCTOR FOR LAGRANGIAN IMMERSIONS, AND HOMOLOGICAL MIRROR SYMMETRY FOR Pa,b,c1 [J].
Cho, Cheol-Hyun ;
Hong, Hansol ;
Lau, Siu-Cheong .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2017, 106 (01) :45-126
[6]   COMPACT GENERATORS IN CATEGORIES OF MATRIX FACTORIZATIONS [J].
Dyckerhoff, Tobias .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (02) :223-274
[7]  
Fukaya K., 2009, AMS/IP Studies in Advanced Mathematics, V46
[8]   Three dimensional Sklyanin algebras and Grobner bases [J].
Iyudu, Natalia ;
Shkarin, Stanislav .
JOURNAL OF ALGEBRA, 2017, 470 :379-419
[9]   COMPARISON OF MIRROR FUNCTORS OF ELLIPTIC CURVES VIA LG/CY CORRESPONDENCE [J].
Lee, Sangwook .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (05) :1135-1165
[10]  
Orlov D, 2009, PROG MATH, V270, P503, DOI 10.1007/978-0-8176-4747-6_16