Elliptic curves with maximal Galois action on their torsion points

被引:22
|
作者
Zywina, David [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
EXCEPTIONAL PRIMES; THEOREM; FIELDS; NUMBER; SUMS;
D O I
10.1112/blms/bdq039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an elliptic curve E over a number field k, the Galois action on the torsion points of E induces a Galois representation rho(E) : Gal((k) over bar/ k) -> GL(2)(Z). For a fixed number field k, we describe the image of rho(E) for a ` random' elliptic curve E over k. In particular, if k not equal Q is linearly disjoint from the cyclotomic extension of Q, then.E will be surjective for ` most' elliptic curves over k.
引用
收藏
页码:811 / 826
页数:16
相关论文
共 50 条
  • [11] COMPUTING IMAGES OF GALOIS REPRESENTATIONS ATTACHED TO ELLIPTIC CURVES
    Sutherland, Andrew V.
    FORUM OF MATHEMATICS SIGMA, 2016, 4
  • [12] Rational points on elliptic and hyperelliptic curves
    Bhargava, Manjul
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL I, 2014, : 657 - 684
  • [13] Averages of the number of points on elliptic curves
    Martin, Greg
    Pollack, Paul
    Smith, Ethan
    ALGEBRA & NUMBER THEORY, 2014, 8 (04) : 813 - 836
  • [14] Singular plane curves with infinitely many Galois points
    Fukasawa, Satoru
    Hasegawa, Takehiro
    JOURNAL OF ALGEBRA, 2010, 323 (01) : 10 - 13
  • [15] Torsion bounds for elliptic curves and Drinfeld modules
    Breuer, Florian
    JOURNAL OF NUMBER THEORY, 2010, 130 (05) : 1241 - 1250
  • [16] Classification of plane curves with infinitely many Galois points
    Fukasawa, Satoru
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2011, 63 (01) : 195 - 209
  • [17] HENSEL-LIFTING TORSION POINTS ON JACOBIANS AND GALOIS REPRESENTATIONS
    Mascot, Nicolas
    MATHEMATICS OF COMPUTATION, 2020, 89 (323) : 1417 - 1455
  • [18] ALMOST TOTALLY COMPLEX POINTS ON ELLIPTIC CURVES
    Guitart, Xavier
    Rotger, Victor
    Zhao, Yu
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (05) : 2773 - 2802
  • [19] TORSION OF RATIONAL ELLIPTIC CURVES OVER CUBIC FIELDS
    Gonzalez-Jimenez, Enrique
    Najman, Filip
    Tornero, Jose M.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (06) : 1899 - 1917
  • [20] GROWTH OF TORSION GROUPS OF ELLIPTIC CURVES UPON BASE CHANGE
    Gonzalez-Jimenez, Enrique
    Najman, Filip
    MATHEMATICS OF COMPUTATION, 2020, 89 (323) : 1457 - 1485