A coarse-grained molecular dynamics model for crystalline solids

被引:42
作者
Li, Xiantao [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
molecular dynamics; coarse-graining; LANGEVIN EQUATION APPROACH; BOUNDARY-CONDITIONS; SURFACE SCATTERING; CONTINUUM; SIMULATION;
D O I
10.1002/nme.2892
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A general mathematical framework for coarse-graining molecular dynamics (MD) model for solid system is presented. The formulation is based directly on the full MD model. The reduction of the atomic degrees of freedom is accomplished using the Mori-Zwanzig projection method. We also demonstrate how to simplify the model under this framework to make the numerical implementation much easier. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:986 / 997
页数:12
相关论文
共 33 条
[21]   TRANSPORT COLLECTIVE MOTION AND BROWNIAN MOTION [J].
MORI, H .
PROGRESS OF THEORETICAL PHYSICS, 1965, 33 (03) :423-+
[22]   GENERALIZED LANGEVIN-EQUATION APPROACH TO IMPURITY DIFFUSION IN SOLIDS - PERTURBATION-THEORY [J].
MUNAKATA, T .
PHYSICAL REVIEW B, 1986, 33 (12) :8016-8026
[23]   A finite-temperature dynamic coupled atomistic/discrete dislocation method [J].
Qu, S ;
Shastry, V ;
Curtin, WA ;
Miller, RE .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2005, 13 (07) :1101-1118
[24]   Roles of mixing patterns in cooperation on a scale-free networked game [J].
Rong, Zhihai ;
Li, Xiang ;
Wang, Xiaofan .
PHYSICAL REVIEW E, 2007, 76 (02)
[25]   Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature [J].
Rudd, RE ;
Broughton, JQ .
PHYSICAL REVIEW B, 2005, 72 (14)
[26]   Coarse-grained molecular dynamics and the atomic limit of finite elements [J].
Rudd, RE ;
Broughton, JQ .
PHYSICAL REVIEW B, 1998, 58 (10) :R5893-R5896
[27]   Quasicontinuum analysis of defects in solids [J].
Tadmor, EB ;
Ortiz, M ;
Phillips, R .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1996, 73 (06) :1529-1563
[28]   A mathematical framework of the bridging scale method [J].
Tang, SQ ;
Hou, TY ;
Liu, WK .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 65 (10) :1688-1713
[29]   Perfectly matched multiscale simulations [J].
To, AC ;
Li, SF .
PHYSICAL REVIEW B, 2005, 72 (03)
[30]   Coupling of atomistic and continuum simulations using a bridging scale decomposition [J].
Wagner, GJ ;
Liu, WK .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 190 (01) :249-274