Nitrogen-doped porous graphene with surface decorated MnO2 nanowires as a high-performance anode material for lithium-ion batteries

被引:36
|
作者
Jiang, Cheng [1 ]
Yuan, Chenpei [1 ]
Li, Peihang [1 ]
Wang, Heng-guo [1 ]
Li, Yanhui [1 ]
Duan, Qian [1 ]
机构
[1] Changchun Univ Sci & Technol, Sch Mat Sci & Engn, Changchun 130022, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
HIGH-CAPACITY; BINDER-FREE; THIN-FILM; CARBON; HYBRID; COMPOSITE; OXIDE; NANOPARTICLES; MICROSPHERES; FABRICATION;
D O I
10.1039/c5ta10711c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An effective strategy was developed to prepare a unique composite by growing MnO2 nanowires on the surface of nitrogen-doped porous graphene (MNPG). The nitrogen-doped porous graphene (NPG) can not only be used as a conductive matrix to greatly improve the conductivity of the MnO2 nanowires but also serve as the active material contributing lithium storage capacity to the composite. As expected, when evaluated as an anode material for lithium-ion batteries (LIBs), the MNPGs show a highly stable capacity of up to 1132.4 mA h g(-1) after 300 cycles at 0.1 A g(-1), a capacity higher than 300 mA h g(-1) even after 2400 cycles at 1 A g(-1) and a good rate capability of 248.5 mA h g(-1) even at 10 A g(-1), which might open new avenues for the design of high-performance electrode materials.
引用
收藏
页码:7251 / 7256
页数:6
相关论文
共 50 条
  • [1] MnO2/Carbon Nanofibers Material as High-Performance Anode for Lithium-Ion Batteries
    Ma, Dandan
    Mu, Xin
    Zhao, Guiqing
    Qin, Xiangge
    Qi, Meili
    COATINGS, 2023, 13 (04)
  • [2] Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries
    Yuan, Guanghui
    Xiang, Jiming
    Jin, Huafeng
    Wu, Lizhou
    Jin, Yanzi
    Zhao, Yan
    MATERIALS, 2018, 11 (01):
  • [3] Nitrogen-doped Carbon Coated Porous Silicon as High Performance Anode Material for Lithium-Ion Batteries
    Jeong, Min-Gi
    Islam, Mobinul
    Du, Hoang Long
    Lee, Yoon-Sung
    Sun, Ho-Hyun
    Choi, Wonchang
    Lee, Joong Kee
    Chung, Kyung Yoon
    Jung, Hun-Gi
    ELECTROCHIMICA ACTA, 2016, 209 : 299 - 307
  • [4] A highly nitrogen-doped porous graphene - an anode material for lithium ion batteries
    Sui, Zhu-Yin
    Wang, Caiyun
    Yang, Quan-Sheng
    Shu, Kewei
    Liu, Yu-Wen
    Han, Bao-Hang
    Wallace, Gordon G.
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (35) : 18229 - 18237
  • [5] High Performance Nitrogen-Doped Si/C as the Anode Material of Lithium-Ion Batteries
    An Jin Ying
    Xin Yuan
    Lian Jin
    Hao Tan
    Runguang Tang
    Russian Journal of Electrochemistry, 2022, 58 : 136 - 142
  • [6] High Performance Nitrogen-Doped Si/C as the Anode Material of Lithium-Ion Batteries
    Ying, Jin
    Yuan, An
    Jin, Xin
    Tan, Lian
    Tang, Hao
    Sun, Runguang
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2022, 58 (02) : 136 - 142
  • [7] Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries
    Huang, Shizheng
    Li, Yu
    Feng, Yiyu
    An, Haoran
    Long, Peng
    Qin, Chengqun
    Feng, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (46) : 23095 - 23105
  • [8] NiCoO2 nanosheets grown on nitrogen-doped porous carbon sphere as a high-performance anode material for lithium-ion batteries
    Sun, Ruixue
    Zhang, Yezhen
    Tang, Yufeng
    Li, Yabei
    Ding, Shujiang
    Liu, Xiaodi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (18) : 13150 - 13157
  • [9] Nitrogen-doped graphene supported NiFe2O4 nanoparticles as high-performance anode material for lithium-ion batteries
    Pan, Shugang
    Zhao, Xianmin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (22) : 26917 - 26928
  • [10] Nitrogen-doped graphene supported NiFe2O4 nanoparticles as high-performance anode material for lithium-ion batteries
    Shugang Pan
    Xianmin Zhao
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 26917 - 26928