Global weak solutions to the inhomogeneous incompressible Navier-Stokes-Vlasov-Boltzmann equations

被引:2
|
作者
Cui, Haibo [1 ]
Yao, Lei [2 ,3 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
[2] Northwest Univ, Sch Math, Xian 710127, Peoples R China
[3] Northwest Univ, Ctr Nonlinear Studies, Xian 710127, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes-Vlasov-Boltzmann equations; Global existence; Weak solutions; EXISTENCE;
D O I
10.1016/j.aml.2021.107344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the initial-boundary value problem of the coupled inhomogeneous incompressible Navier-Stokes equations and Vlasov-Boltzmann equation for the moderately thick spray is considered in three-dimensional space. The global existence of weak solutions is established by an approximation scheme, a fixed point argument and the weak convergence method. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Global Solution to the Incompressible Inhomogeneous Navier–Stokes Equations with Some Large Initial Data
    Huan Xu
    Yongsheng Li
    Fei Chen
    Journal of Mathematical Fluid Mechanics, 2017, 19 : 315 - 328
  • [42] Global Wellposedness for the 3D Inhomogeneous Incompressible Navier-Stokes Equations
    Craig, Walter
    Huang, Xiangdi
    Wang, Yun
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (04) : 747 - 758
  • [43] Global weak solutions to the Vlasov-Poisson-Fokker-Planck-Navier-Stokes system
    Chen, Li
    Li, Fucai
    Li, Yue
    Zamponi, Nicola
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 2729 - 2745
  • [44] From the Boltzmann equation to the incompressible Navier-Stokes equations
    Golse, Francois
    RECENT ADVANCES IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 65 : 171 - 192
  • [45] Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system
    Paicu, Marius
    Zhang, Ping
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (08) : 3556 - 3584
  • [46] Global Weak Besov Solutions of the Navier-Stokes Equations and Applications
    Albritton, Dallas
    Barker, Tobias
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (01) : 197 - 263
  • [47] EXISTENCE OF GLOBAL WEAK SOLUTIONS OF p-NAVIER-STOKES EQUATIONS
    Liu, Jian-Guo
    Zhang, Zhaoyun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (01): : 469 - 486
  • [48] Global existence of weak solutions to the Navier-Stokes-Korteweg equations
    Antonelli, Paolo
    Spirito, Stefano
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (01): : 171 - 200
  • [49] On the Stability in Weak Topology of the Set of Global Solutions to the Navier–Stokes Equations
    Hajer Bahouri
    Isabelle Gallagher
    Archive for Rational Mechanics and Analysis, 2013, 209 : 569 - 629
  • [50] Inhomogeneous Incompressible Navier-Stokes Equations on Thin Domains
    Sun, Yongzhong
    Wang, Shifang
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2020, 8 (02) : 239 - 253