On the complexity of multiple bondage in graphs

被引:0
作者
Rad, Nader Jafari [1 ]
机构
[1] Shahed Univ, Dept Math, Tehran, Iran
关键词
Bondage; p-Bondage; p-Total bondage; p-Tuple bondage; Double bondage; Complexity; 3-SAT; NUMBER; DOMINATION; BOUNDS;
D O I
10.1016/j.tcs.2019.09.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let p be a positive integer. The bondage number (p-bondage number, p-total bondage number, p-tuple bondage number, double bondage number) of a graph G, is the minimum number of edges whose removal from G results in a graph with larger domination number (respectively, p-domination number, p-total domination number, p-tuple domination number, double domination number). In this paper we show that the decision problems for these variants are NP-hard, even when restricted to bipartite graphs, thus improving the results on the complexity of multiple bondage given in N. Jafari Rad (2015) [14]. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 186
页数:7
相关论文
共 25 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[2]   DOMINATION ALTERATION SETS IN GRAPHS [J].
BAUER, D ;
HARARY, F ;
NIEMINEN, J ;
SUFFEL, CL .
DISCRETE MATHEMATICS, 1983, 47 (2-3) :153-161
[3]   Some bounds on the p-domination number in trees [J].
Blidia, Mostafa ;
Chellali, Mustapha ;
Volkmann, Lutz .
DISCRETE MATHEMATICS, 2006, 306 (17) :2031-2037
[4]   k-Domination and k-Independence in Graphs: A Survey [J].
Chellali, Mustapha ;
Favaron, Odile ;
Hansberg, Adriana ;
Volkmann, Lutz .
GRAPHS AND COMBINATORICS, 2012, 28 (01) :1-55
[5]  
Dunbar JE, 1998, MG TXB PUR APPL MATH, V209, P471
[6]  
Fink J.F., 1985, Proceedings of the Graph Theory with Applications to Algorithms and Computer Science, P282
[7]   THE BONDAGE NUMBER OF A GRAPH [J].
FINK, JF ;
JACOBSON, MS ;
KINCH, LF ;
ROBERTS, J .
DISCRETE MATHEMATICS, 1990, 86 (1-3) :47-57
[8]  
Harary F, 2000, ARS COMBINATORIA, V55, P201
[9]   BOUNDS ON THE BONDAGE NUMBER OF A GRAPH [J].
HARTNELL, BL ;
RALL, DF .
DISCRETE MATHEMATICS, 1994, 128 (1-3) :173-177
[10]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT, V1st, DOI [10.1201/9781482246582, DOI 10.1201/9781482246582]