Toward Accurate Physics-Based Specifications of Neutral Density Using GNSS-Enabled Small Satellites

被引:5
作者
Sutton, Eric K. [1 ]
Thayer, Jeffrey P. [1 ,2 ]
Pilinski, Marcin D. [3 ]
Mutschler, Shaylah M. [2 ]
Berger, Thomas E. [1 ]
Nguyen, Vu [4 ]
Masters, Dallas [4 ]
机构
[1] Univ Colorado, Space Weather Technol Res & Educ Ctr SWx TREC, Boulder, CO 80309 USA
[2] Univ Colorado, Ann & HJ Smead Aerosp Engn Sci, Boulder, CO USA
[3] Univ Colorado, Lab Atmospher & Space Phys LASP, Boulder, CO USA
[4] Spire Global Inc, Boulder, CO USA
来源
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS | 2021年 / 19卷 / 06期
关键词
gnss-enabled cubesats; gps-enabled cubesats; orbital energy; precision orbit determination; satellite drag; thermospheric density; THERMOSPHERE MODEL; DATA ASSIMILATION; PERFORMANCE; CHAMP; SWARM;
D O I
10.1029/2021SW002736
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Satellite-atmosphere interactions cause large uncertainties in low-Earth orbit determination and prediction. Thus, knowledge of and the ability to predict the space environment, most notably thermospheric mass density, are essential for operating satellites in this domain. Recent progress has been made toward supplanting the existing empirical, operational methods with physics-based data-assimilative models by accounting for the complex relationship between external drivers such as solar irradiance, Joule, and particle heating, and their response in the upper atmosphere. Simultaneously, a new era of CubeSat constellations is set to provide data with which to calibrate our upper-atmosphere models at higher spatial resolution and temporal cadence. With this in mind, we provide an initial method for converting precision orbit determination solutions from global navigation satellite system enabled CubeSats into timeseries of thermospheric mass density. This information is then fused with a physics-based, data-assimilative technique to provide calibrated model densities.
引用
收藏
页数:15
相关论文
共 35 条
[1]   Flying Through Uncertainty [J].
Berger, T. E. ;
Holzinger, M. J. ;
Sutton, E. K. ;
Thayer, J. P. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2020, 18 (01)
[2]   A Simple Method for Correcting Empirical Model Densities During Geomagnetic Storms Using Satellite Orbit Data [J].
Brandt, Daniel A. ;
Bussy-Virat, Charles D. ;
Ridley, Aaron J. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2020, 18 (12)
[3]   Atmospheric densities derived from CHAMP/STAR accelerometer observations [J].
Bruinsma, S ;
Tamagnan, D ;
Biancale, R .
PLANETARY AND SPACE SCIENCE, 2004, 52 (04) :297-312
[4]  
Bruinsma S., 2021, Eos, DOI [10.1029/2021EO153475, DOI 10.1029/2021EO153475]
[5]   Thermosphere modeling capabilities assessment: geomagnetic storms [J].
Bruinsma, Sean ;
Boniface, Claude ;
Sutton, Eric K. ;
Fedrizzi, Mariangel .
JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2021, 11
[6]  
Codrescu M.V., 2021, SPACE WEATHER, DOI [10.1002/essoar.10505945.1, DOI 10.1002/ESSOAR.10505945.1]
[7]   An ensemble-type Kalman filter for neutral thermospheric composition during geomagnetic storms [J].
Codrescu, MV ;
Fuller-Rowell, TJ ;
Minter, CF .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2004, 2 (11)
[8]   An Ensemble Kalman Filter for the Thermosphere-Ionosphere [J].
Codrescu, S. M. ;
Codrescu, M. V. ;
Fedrizzi, M. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2018, 16 (01) :57-68
[9]   Neutral Density and Crosswind Determination from Arbitrarily Oriented Multiaxis Accelerometers on Satellites [J].
Doornbos, Eelco ;
van den IJssel, Jose ;
Luhr, Hermann ;
Forster, Matthias ;
Koppenwallner, Georg .
JOURNAL OF SPACECRAFT AND ROCKETS, 2010, 47 (04) :580-589
[10]   Swarm -: An Earth Observation Mission investigating Geospace [J].
Friis-Christensen, E. ;
Luehr, H. ;
Knudsen, D. ;
Haagmans, R. .
ADVANCES IN SPACE RESEARCH, 2008, 41 (01) :210-216