Effects of Long-Term Straw Management and Potassium Fertilization on Crop Yield, Soil Properties, and Microbial Community in a Rice-Oilseed Rape Rotation

被引:24
|
作者
Li, Jifu [1 ,2 ]
Gan, Guoyu [1 ,2 ]
Chen, Xi [1 ]
Zou, Jialong [3 ]
机构
[1] Yangtze Univ, Minist Educ, Engn Res Ctr Ecol & Agr Use Wetland, Coll Agr, 266 Jingmi Rd, Jingzhou 434025, Peoples R China
[2] Minist Agr & Rural Areas, Key Lab Waste & Fertilizat Utilizat, Wuhan 430070, Peoples R China
[3] Bur Agr & Rural Areas, Agr Sci & Technol Serv Ctr, Jingzhou 434025, Peoples R China
来源
AGRICULTURE-BASEL | 2021年 / 11卷 / 12期
关键词
straw management; potassium fertilizer; rice-oilseed rape rotation; yield; bacterial community; fungal community; BACTERIAL COMMUNITY; WHEAT-STRAW; MAIZE; DECOMPOSITION; DIVERSITY; RESIDUE; RETURN; POTENTIALS; EFFICIENCY; DYNAMICS;
D O I
10.3390/agriculture11121233
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The present study aims to assess the influences of long-term crop straw returning and recommended potassium fertilization on the dynamic change in rice and oilseed rape yield, soil properties, bacterial and fungal alpha diversity, and community composition in a rice-oilseed rape system. A long-term (2011-2020) field experiment was carried out in a selected paddy soil farmland in Jianghan Plain, central China. There were four treatments with three replications: NP, NPK, NPS, and NPKS, where nitrogen (N), phosphate (P), potassium (K), and (S) denote N fertilizer, P fertilizer, K fertilizer, and crop straw, respectively. Results showed that long-term K fertilization and crop straw returning could increase the crop yield at varying degrees for ten years. Compared with the NP treatment, the long-term crop straw incorporation with K fertilizer (NPKS treatment) was found to have the best effect, and the yield rates increased by 23.0% and 20.5% for rice and oilseed rape, respectively. The application of NPK fertilizer for ten years decreased the bacterial and fungal alpha diversity and the relative abundance of dominant bacterial and fungal taxa, whereas continuous straw incorporation had a contradictory effect. NPKS treatment significantly increased the relative abundance of some copiotrophic bacteria (Firmicutes, Gemmatimonadetes, and Proteobacteria) and fungi (Ascomycota). Available K, soil organic matter, dissolved organic carbon, and easily oxidized organic carbon were closely related to alterations in the composition of the dominant bacterial community; easily oxidized organic carbon, dissolved organic carbon, and slowly available K were significantly correlated with the fungal community. We conclude that long-term crop straw returning to the field accompanied with K fertilizer should be employed in rice-growing regions to achieve not only higher crop yield but also the increase in soil active organic carbon and available K content and the improvement of the biological quality of farmland.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure
    Guo, Zhen
    Han, Jichang
    Li, Juan
    Xu, Yan
    Wang, Xiaoli
    PLOS ONE, 2019, 14 (01):
  • [32] Long-term effects of grassland management on soil microbial abundance: implications for soil carbon and nitrogen storage
    Egan, Gary
    Zhou, Xue
    Wang, Dongmei
    Jia, Zhongjun
    Crawley, Michael J.
    Fornara, Dario
    BIOGEOCHEMISTRY, 2018, 141 (02) : 213 - 228
  • [33] Long-Term No-Tillage and Straw Retention Management Enhances Soil Bacterial Community Diversity and Soil Properties in Southern China
    Luo, Yuqiong
    Iqbal, Anas
    He, Liang
    Zhao, Quan
    Wei, Shangqin
    Ali, Izhar
    Ullah, Saif
    Yan, Bo
    Jiang, Ligeng
    AGRONOMY-BASEL, 2020, 10 (09):
  • [34] Crop Yield and Soil Responses to Long-Term Fertilization on a Red Soil in Southern China
    Zhang Hui-Min
    Wang Bo-Ren
    Xu Ming-Gang
    Fan Ting-Lu
    PEDOSPHERE, 2009, 19 (02) : 199 - 207
  • [35] Phosphorus availability and rice grain yield in a paddy soil in response to long-term fertilization
    Lan, Z. M.
    Lin, X. J.
    Wang, F.
    Zhang, H.
    Chen, C. R.
    BIOLOGY AND FERTILITY OF SOILS, 2012, 48 (05) : 579 - 588
  • [36] Mycorrhizal effects on crop yield and soil ecosystem functions in a long-term tillage and fertilization experiment
    Peng, Zhenling
    Johnson, Nancy Collins
    Jansa, Jan
    Han, Jiayao
    Fang, Zhou
    Zhang, Yali
    Jiang, Shengjing
    Xi, Hao
    Mao, Lin
    Pan, Jianbin
    Zhang, Qi
    Feng, Huyuan
    Fan, Tinglu
    Zhang, Jianjun
    Liu, Yongjun
    NEW PHYTOLOGIST, 2024, 242 (04) : 1798 - 1813
  • [37] Effect of crop rotation and straw application in combination with mineral nitrogen fertilization on soil carbon sequestration in the Thyrow long-term experiment Thy_D5
    Kroschewski, Baerbel
    Richter, Christel
    Baumecker, Michael
    Kautz, Timo
    PLANT AND SOIL, 2023, 488 (1-2) : 121 - 136
  • [38] Effects of long-term full straw return on yield and potassium response in wheat-maize rotation
    Bai You-lu
    Wang Lei
    Lu Yan-li
    Yang Li-ping
    Zhou Li-ping
    Ni Lu
    Cheng Ming-fang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2015, 14 (12) : 2467 - 2476
  • [39] Soil microbial community and network changes after long-term use of plastic mulch and nitrogen fertilization on semiarid farmland
    Liu, Jianliang
    Li, Shiqing
    Yue, Shanchao
    Tian, Jianqing
    Chen, Huai
    Jiang, Haibo
    Siddique, Kadambot H. M.
    Zhan, Ai
    Fang, Quanxiao
    Yu, Qiang
    GEODERMA, 2021, 396
  • [40] Effects of long-term winter cropping on paddy rice yield, soil properties and rhizosphere bacterial community in Southern China
    Wang, Haocheng
    Zhou, Quan
    Wang, Shubin
    Zhang, Peng
    Wang, Lixian
    Wang, Zhiqiang
    Zhang, Lijin
    Huang, Guoqin
    FIELD CROPS RESEARCH, 2025, 322