Feasibility of 3D Reconstruction of Neural Morphology Using Expansion Microscopy and Barcode-Guided Agglomeration

被引:12
作者
Yoon, Young-Gyu [1 ,2 ]
Dai, Peilun [2 ,3 ]
Wohlwend, Jeremy [1 ,2 ]
Chang, Jae-Byum [2 ,4 ]
Marblestone, Adam H. [2 ]
Boyden, Edward S. [2 ,3 ,5 ,6 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Media Lab, Cambridge, MA 02139 USA
[3] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[4] Sungkyunkwan Univ, Dept Biomed Engn, Seoul, South Korea
[5] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] MIT, McGovern Inst, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE | 2017年 / 11卷
关键词
neural morphology; 3-D reconstruction; expansion microscopy; RNA barcode; convolutional neural network; agglomeration; LIGHT-MICROSCOPY; HIGH-THROUGHPUT; FLUORESCENT PROTEINS; POLYACRYLAMIDE; RESOLUTION; CELLS; RNA;
D O I
10.3389/fncom.2017.00097
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We here introduce and study the properties, via computer simulation, of a candidate automated approach to algorithmic reconstruction of dense neural morphology, based on simulated data of the kind that would be obtained via two emerging molecular technologies-expansion microscopy (ExM) and in-situ molecular barcoding. We utilize a convolutional neural network to detect neuronal boundaries from protein-tagged plasma membrane images obtained via ExM, as well as a subsequent supervoxel-merging pipeline guided by optical readout of information-rich, cell-specific nucleic acid barcodes. We attempt to use conservative imaging and labeling parameters, with the goal of establishing a baseline case that points to the potential feasibility of optical circuit reconstruction, leaving open the possibility of higher-performance labeling technologies and algorithms. We find that, even with these conservative assumptions, an all-optical approach to dense neural morphology reconstruction may be possible via the proposed algorithmic framework. Future work should explore both the design-space of chemical labels and barcodes, aswell as algorithms, to ultimately enable routine, high-performance optical circuit reconstruction.
引用
收藏
页数:13
相关论文
共 45 条
  • [1] [Anonymous], 2016, ARXIV161100421
  • [2] [Anonymous], 2000, ADV OPTICAL IMAGING
  • [3] [Anonymous], 2013, ADV NEURAL INFORM PR
  • [4] Crowdsourcing the creation of image segmentation algorithms for connectomics
    Arganda-Carreras, Ignacio
    Turaga, Srinivas C.
    Berger, Daniel P.
    Ciresan, Dan
    Giusti, Alessandro
    Gambardella, Luca M.
    Schmidhuber, Juergen
    Laptev, Dmitry
    Dwivedi, Sarvesh
    Buhmann, Joachim M.
    Liu, Ting
    Seyedhosseini, Mojtaba
    Tasdizen, Tolga
    Kamentsky, Lee
    Burget, Radim
    Uher, Vaclav
    Tan, Xiao
    Sun, Changming
    Pham, Tuan D.
    Bas, Erhan
    Uzunbas, Mustafa G.
    Cardona, Albert
    Schindelin, Johannes
    Seung, H. Sebastian
    [J]. FRONTIERS IN NEUROANATOMY, 2015, 9 : 1 - 13
  • [5] Berger D., 2013, SNEMI3D 3D SEGMENTAT
  • [6] SegEM: Efficient Image Analysis for High-Resolution Connectomics
    Berning, Manuel
    Boergens, Kevin M.
    Helmstaedter, Moritz
    [J]. NEURON, 2015, 87 (06) : 1193 - 1206
  • [7] Cai D, 2013, NAT METHODS, V10, P540, DOI [10.1038/NMETH.2450, 10.1038/nmeth.2450]
  • [8] Chang JB, 2017, NAT METHODS, V14, P593, DOI [10.1038/NMETH.4261, 10.1038/nmeth.4261]
  • [9] Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution
    Chen, Bi-Chang
    Legant, Wesley R.
    Wang, Kai
    Shao, Lin
    Milkie, Daniel E.
    Davidson, Michael W.
    Janetopoulos, Chris
    Wu, Xufeng S.
    Hammer, John A., III
    Liu, Zhe
    English, Brian P.
    Mimori-Kiyosue, Yuko
    Romero, Daniel P.
    Ritter, Alex T.
    Lippincott-Schwartz, Jennifer
    Fritz-Laylin, Lillian
    Mullins, R. Dyche
    Mitchell, Diana M.
    Bembenek, Joshua N.
    Reymann, Anne-Cecile
    Boehme, Ralph
    Grill, Stephan W.
    Wang, Jennifer T.
    Seydoux, Geraldine
    Tulu, U. Serdar
    Kiehart, Daniel P.
    Betzig, Eric
    [J]. SCIENCE, 2014, 346 (6208) : 439 - +
  • [10] Nanoscale imaging of RNA with expansion microscopy
    Chen, Fei
    Wassie, Asmamaw T.
    Cote, Allison J.
    Sinha, Anubhav
    Alon, Shahar
    Asano, Shoh
    Daugharthy, Evan R.
    Chang, Jae-Byum
    Marblestone, Adam
    Church, George M.
    Raj, Arjun
    Boyden, Edward S.
    [J]. NATURE METHODS, 2016, 13 (08) : 679 - +