Discontinuous Galerkin Methods for Electromagnetic Waves in Dispersive Media

被引:1
作者
Hagstrom, Thomas [1 ]
Appelo, Daniel [2 ]
Zhang, Lu [3 ]
机构
[1] Southern Methodist Univ, Dept Math, Dallas, TX 75205 USA
[2] Michigan State Univ, Dept Math, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
来源
2021 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES) | 2021年
关键词
dispersive media; discontinuous Galerkin methods; rational approximation; APPROXIMATION; FORMULATION;
D O I
10.1109/ACES53325.2021.00067
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider numerical methods for Maxwell's equations in general linear dispersive media. First, we use standard energy techniques to prove stability for discontinuous Galerkin methods applied to both first-order and second-order formulations. Second, we discuss the general representation of the polarization kernel by rational functions in continued fraction form.
引用
收藏
页数:4
相关论文
共 27 条
[1]  
[Anonymous], 1948, Analytic Theory of Continued Fractions
[2]  
Appelo D., ENERGY BASED D UNPUB, V2021
[3]  
Appelo D., 2021, ENERGY BASED D UNPUB
[4]   A NEW DISCONTINUOUS GALERKIN FORMULATION FOR WAVE EQUATIONS IN SECOND-ORDER FORM [J].
Appeloe, Daniel ;
Hagstrom, Thomas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (06) :2705-2726
[5]   Pade approximants, continued fractions, and orthogonal polynomials [J].
Aptekarev, A. I. ;
Buslaev, V. I. ;
Martinez-Finkelshtein, A. ;
Suetin, S. P. .
RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (06) :1049-1131
[6]   On optimal finite-difference approximation of PML [J].
Asvadurov, S ;
Druskin, V ;
Guddati, MN ;
Knizhnerman, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :287-305
[7]   DISCONTINUOUS GALERKIN GALERKIN DIFFERENCES FOR THE WAVE EQUATION IN SECOND-ORDER FORM [J].
Banks, J. W. ;
Buckner, B. Brett ;
Hagstrom, T. ;
Juhnke, K. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02) :A1497-A1526
[8]   A high-order accurate scheme for Maxwell's equations with a Generalized Dispersive Material (GDM) model and material interfaces [J].
Banks, Jeffrey W. ;
Buckner, Benjamin B. ;
Henshaw, William D. ;
Jenkinson, Michael J. ;
Kildishev, Alexander V. ;
Kovacic, Gregor ;
Prokopeva, Ludmila J. ;
Schwendeman, Donald W. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 412
[9]   Incorporating the Havriliak-Negami dielectric model in the FD-TD method [J].
Causley, Matthew F. ;
Petropoulos, Peter G. ;
Jiang, Shidong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) :3884-3899
[10]  
Citty B., 2021, RAD BOUNDARY C UNPUB