Feature Fusion via Deep Residual Graph Convolutional Network for Hyperspectral Image Classification

被引:4
|
作者
Chen, Rong [1 ]
Guanghui, Li [1 ]
Dai, Chenglong [1 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Hyperspectral imaging; Convolution; Aggregates; Ions; Geoscience and remote sensing; Training; Feature fusion; graph convolutional network (GCN); hyperspectral image (HSI) classification; residual learning;
D O I
10.1109/LGRS.2022.3192832
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, graph convolutional network (GCN) has been applied for hyperspectral image (HSI) classification and obtained better performance. The main issue in HSI classification is that the high-resolution HSI contains more complex spectral-spatial structure information. However, the previous GCN-based methods applied in HSI classification only adopted a shallow GCN layer and they cannot extract the deeper discriminative features. In addition, these methods ignored the complementary and correlated information among multiorder neighboring information extracted by multiple GCN layers. In this letter, a novel feature fusion via deep residual GCN is proposed to explore the internal relationship among HSI data. On the one hand, benefiting from residual learning to alleviate the over-smoothing problem, we can construct deep GCN layers to excavate deeper abstract features of HSI. On the other hand, we fuse the outputs of different GCN layers, and thus, the local structural information within multiorder neighborhood nodes can be fully utilized. Extensive experiments on four real HSI datasets, including Indian Pines, Pavia University, Salinas, and Houston University, demonstrate the superiority of the proposed method compared with other state-of-the-art methods in various evaluation criteria.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Hyperspectral and SAR Image Classification via Graph Convolutional Fusion Network
    Deng, Bin
    Duan, Puhong
    Lu, Xukun
    Wang, Zihao
    Kang, Xudong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [2] Graph Convolutional Network With Local and Global Feature Fusion for Hyperspectral Image Classification
    Wang, Yufan
    Yu, Xiaodong
    Dong, Hongbin
    Zang, Shuying
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [3] Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification
    Li, Xian
    Ding, Mingli
    Pizurica, Aleksandra
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2615 - 2629
  • [4] DRGCN: Dual Residual Graph Convolutional Network for Hyperspectral Image Classification
    Chen, Rong
    Li, Guanghui
    Dai, Chenglong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification
    Dong, Yanni
    Liu, Quanwei
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1559 - 1572
  • [6] Hyperspectral Image Classification With Deep Feature Fusion Network
    Song, Weiwei
    Li, Shutao
    Fang, Leyuan
    Lu, Ting
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3173 - 3184
  • [7] Deep Feature Aggregation Network for Hyperspectral Remote Sensing Image Classification
    Zhang, Chunju
    Li, Guandong
    Lei, Runmin
    Du, Shihong
    Zhang, Xueying
    Zheng, Hui
    Wu, Zhaofu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5314 - 5325
  • [8] Hyperspectral Image Classification Based on Deep Attention Graph Convolutional Network
    Bai, Jing
    Ding, Bixiu
    Xiao, Zhu
    Jiao, Licheng
    Chen, Hongyang
    Regan, Amelia C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Attention Multihop Graph and Multiscale Convolutional Fusion Network for Hyperspectral Image Classification
    Zhou, Hao
    Luo, Fulin
    Zhuang, Huiping
    Weng, Zhenyu
    Gong, Xiuwen
    Lin, Zhiping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [10] Spatial Pooling Graph Convolutional Network for Hyperspectral Image Classification
    Zhang, Xiangrong
    Chen, Shutong
    Zhu, Peng
    Tang, Xu
    Feng, Jie
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60