Superconducting-qubit readout via low-backaction electro-optic transduction

被引:82
作者
Delaney, R. D. [1 ,2 ,3 ]
Urmey, M. D. [1 ,2 ,3 ]
Mittal, S. [1 ,2 ,3 ]
Brubaker, B. M. [1 ,2 ,3 ]
Kindem, J. M. [1 ,2 ,3 ]
Burns, P. S. [1 ,2 ,3 ]
Regal, C. A. [1 ,2 ,3 ]
Lehnert, K. W. [1 ,2 ,3 ,4 ]
机构
[1] NIST, JILA, Boulder, CO 20899 USA
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] NIST, Boulder, CO USA
关键词
QUANTUM; MICROWAVE; NOISE;
D O I
10.1038/s41586-022-04720-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Entangling microwave-frequency superconducting quantum processors through optical light at ambient temperature would enable means of secure communication and distributed quantum information processing(1). However, transducing quantum signals between these disparate regimes of the electro-magnetic spectrum remains an outstanding goal(2-9), and interfacing superconducting qubits, which are constrained to operate at millikelvin temperatures, with electro-optic transducers presents considerable challenges owing to the deleterious effects of optical photons on superconductors(9,10). Moreover, many remote entanglement protocols(11-14) require multiple qubit gates both preceding and following the upconversion of the quantum state, and thus an ideal transducer should impart minimal backaction(15) on the qubit. Here we demonstrate readout of a superconducting transmon qubit through a low-backaction electro-optomechanical transducer. The modular nature of the transducer and circuit quantum electrodynamics system used in this work enable complete isolation of the qubit from optical photons, and the backaction on the qubit from the transducer is less than that imparted by thermal radiation from the environment. Moderate improvements in the transducer bandwidth and the added noise will enable us to leverage the full suite of tools available in circuit quantum electrodynamics to demonstrate transduction of non-classical signals from a superconducting qubit to the optical domain.
引用
收藏
页码:489 / +
页数:17
相关论文
共 43 条
[1]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/nphys2911, 10.1038/NPHYS2911]
[2]  
Arnold G, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18269-z
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[5]   Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits [J].
Barends, R. ;
Wenner, J. ;
Lenander, M. ;
Chen, Y. ;
Bialczak, R. C. ;
Kelly, J. ;
Lucero, E. ;
O'Malley, P. ;
Mariantoni, M. ;
Sank, D. ;
Wang, H. ;
White, T. C. ;
Yin, Y. ;
Zhao, J. ;
Cleland, A. N. ;
Martinis, John M. ;
Baselmans, J. J. A. .
APPLIED PHYSICS LETTERS, 2011, 99 (11)
[6]   On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4 [J].
Bartholomew, John G. ;
Rochman, Jake ;
Xie, Tian ;
Kindem, Jonathan M. ;
Ruskuc, Andrei ;
Craiciu, Ioana ;
Lei, Mi ;
Faraon, Andrei .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[8]  
Brubaker B. M., PREPRINT
[9]   General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED [J].
Bultink, C. C. ;
Tarasinski, B. ;
Haandbaek, N. ;
Poletto, S. ;
Haider, N. ;
Michalak, D. J. ;
Bruno, A. ;
DiCarlo, L. .
APPLIED PHYSICS LETTERS, 2018, 112 (09)
[10]   Quantum error correction of a qubit encoded in grid states of an oscillator [J].
Campagne-Ibarcq, P. ;
Eickbusch, A. ;
Touzard, S. ;
Zalys-Geller, E. ;
Frattini, N. E. ;
Sivak, V. V. ;
Reinhold, P. ;
Puri, S. ;
Shankar, S. ;
Schoelkopf, R. J. ;
Frunzio, L. ;
Mirrahimi, M. ;
Devoret, M. H. .
NATURE, 2020, 584 (7821) :368-+