Deep multi-scale attention network for RNA-binding proteins prediction

被引:19
作者
Du, Bo [1 ,2 ]
Liu, Ziyi [1 ,2 ]
Luo, Fulin [3 ]
机构
[1] Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Inst Artificial Intelligence, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Multimedia & Network Commun Engn, Wuhan 430072, Peoples R China
[3] Wuhan Univ, State Key Lab Informat Engn Surveying, Mapping & Remote Sensing, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
RNA-binding proteins; Deep learning; Convolutional neural network; Multi-scale information; Attention mechanism; MESSENGER-RNAS; SEQUENCE; DNA; MOTIFS; ARCHITECTURES; SITES;
D O I
10.1016/j.ins.2021.09.025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
ABSTR A C T RNA-binding proteins (RBPs) play a significant part in several biological processes in the living cell, such as gene regulation and mRNA localization. The research indicates that the mutation of RBPs will lead to some serious diseases. Several deep learning methods, especially the model based on convolutional neural network (CNN), have been used to pre-dict the binding sites. However, these methods only use single-scale filters to extract a fixed length of motifs features, which restricts the performance of prediction. For the sequence data, different sizes of filters may learn different biological information of the RNA sequence. Therefore, a deep multi-scale attention network (DeepMSA) based on con-volutional neural network is proposed to predict the sequence-binding preferences of RBPs. DeepMSA extracts features by multi-scale CNNs and integrates these features with an attention model to predict the RBPs and binding motifs. Experiments demonstrate DeepMSA outperforms several state-of-the-art methods on the invivo and invitro datasets. The results indicate that attention can make the model learn the consistent pattern of can-didate motifs, which can provide some important guiding advice for RBP motifs. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:287 / 301
页数:15
相关论文
共 48 条
[1]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[2]   doRiNA: a database of RNA interactions in post-transcriptional regulation [J].
Anders, Gerd ;
Mackowiak, Sebastian D. ;
Jens, Marvin ;
Maaskola, Jonas ;
Kuntzagk, Andreas ;
Rajewsky, Nikolaus ;
Landthaler, Markus ;
Dieterich, Christoph .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D180-D186
[3]   DeepLoc: prediction of protein subcellular localization using deep learning [J].
Armenteros, Jose Juan Almagro ;
Sonderby, Casper Kaae ;
Sonderby, Soren Kaae ;
Nielsen, Henrik ;
Winther, Ole .
BIOINFORMATICS, 2017, 33 (21) :3387-3395
[4]   MEME SUITE: tools for motif discovery and searching [J].
Bailey, Timothy L. ;
Boden, Mikael ;
Buske, Fabian A. ;
Frith, Martin ;
Grant, Charles E. ;
Clementi, Luca ;
Ren, Jingyuan ;
Li, Wilfred W. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W202-W208
[5]   A deep neural network approach for learning intrinsic protein-RNA binding preferences [J].
Ben-Bassat, Ilan ;
Chor, Benny ;
Orenstein, Yaron .
BIOINFORMATICS, 2018, 34 (17) :638-646
[6]   Assigning roles to DNA regulatory motifs using comparative genomics [J].
Buske, Fabian A. ;
Boden, Mikael ;
Bauer, Denis C. ;
Bailey, Timothy L. .
BIOINFORMATICS, 2010, 26 (07) :860-866
[7]  
Collobert R, 2011, J MACH LEARN RES, V12, P2493
[8]   TDP-43 and FUS RNA-binding Proteins Bind Distinct Sets of Cytoplasmic Messenger RNAs and Differently Regulate Their Post-transcriptional Fate in Motoneuron-like Cells [J].
Colombrita, Claudia ;
Onesto, Elisa ;
Megiorni, Francesca ;
Pizzuti, Antonio ;
Baralle, Francisco E. ;
Buratti, Emanuele ;
Silani, Vincenzo ;
Ratti, Antonia .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (19) :15635-15647
[9]   RNAcommender: genome-wide recommendation of RNA-protein interactions [J].
Corrado, Gianluca ;
Tebaldi, Toma ;
Costa, Fabrizio ;
Frasconi, Paolo ;
Passerini, Andrea .
BIOINFORMATICS, 2016, 32 (23) :3627-3634
[10]   A survey of DNA motif finding algorithms [J].
Das, Modan K. ;
Dai, Ho-Kwok .
BMC BIOINFORMATICS, 2007, 8 (Suppl 7)