Low-dimensional compact embeddings of symmetric Sobolev spaces with applications

被引:9
作者
Faraci, Francesca [1 ]
Iannizzotto, Antonio [1 ]
Kristaly, Alexandru [2 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
[2] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
关键词
PRINCIPLE;
D O I
10.1017/S0308210510000168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If Omega is an unbounded domain in R-N and p > N, the Sobolev space W-1,W-p(Omega) is not compactly embedded into L-infinity(Omega). Nevertheless, we prove that if Omega is a strip-like domain, then the subspace of W-1,W-p(Omega) consisting of the cylindrically symmetric functions is compactly embedded into L-infinity (Omega). As an application, we study a Neumann problem involving the p-Laplacian operator and an oscillating nonlinearity, proving the existence of infinitely many weak solutions. Analogous results are obtained for the case of partial symmetry.
引用
收藏
页码:383 / 395
页数:13
相关论文
共 10 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[3]   Infinitely Many Solutions for a Boundary Value Problem with Discontinuous Nonlinearities [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica .
BOUNDARY VALUE PROBLEMS, 2009,
[5]   Linking and multiplicity results for the p-Laplacian on unbounded cylinders [J].
Fan, XL ;
Zhao, YZ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (02) :479-489
[6]   On a class of quasilinear eigenvalue problems in RN [J].
Kristály, A ;
Varga, C .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (15) :1756-1765
[7]   SYMMETRY AND COMPACTNESS IN SOBOLEV SPACES [J].
LIONS, PL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 49 (03) :315-334
[8]   PRINCIPLE OF SYMMETRIC CRITICALITY [J].
PALAIS, RS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 69 (01) :19-30
[9]   A general variational principle and some of its applications [J].
Ricceri, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 113 (1-2) :401-410
[10]  
Willem M., 1997, Minimax theorems