Double Roman domination subdivision number in graphs

被引:4
作者
Amjadi, J. [1 ]
Sadeghi, H. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Double Roman domination number; double Roman domination subdivision number; NP-hardness;
D O I
10.1142/S179355712250125X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G = (V, E), a double Roman dominating function is a function f : V(G) -> {0, 1, 2, 3} having the property that if f(v) = 0, then vertex v must have at least two neighbors assigned 2 under f or one neighbor with f(w) = 3, and if f(v) = 1, then vertex v must have at least one neighbor with f(w) >= 2. The weight of a double Roman dominating function f is the value w(f) = Sigma(v is an element of V(G)) f(v). The double Roman domination number of a graph G, denoted by gamma(dR)(G), equals the minimum weight of a double Roman dominating function on G. The double Roman domination subdivision number sd(gamma dR) (G) of a graph G is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the double Roman domination number. In this paper, we first show that the decision problem associated with sd(gamma dR) (G) is NP-hard and then establish upper bounds on the double Roman domination subdivision number for arbitrary graphs.
引用
收藏
页数:14
相关论文
共 21 条
[1]  
Abdollahzadeh Ahangar H., 2019, ARS COMBINATORIA, V145, P173
[2]   Triple Roman domination in graphs [J].
Ahangar, H. Abdollahzadeh ;
Alvarez, M. P. ;
Chellali, M. ;
Sheikholeslami, S. M. ;
Valenzuela-Tripodoro, J. C. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 391
[3]   On the double Roman domination in graphs [J].
Ahangar, Hossein Abdollahzadeh ;
Chellali, Mustapha ;
Sheikholeslami, Seyed Mahmoud .
DISCRETE APPLIED MATHEMATICS, 2017, 232 :1-7
[4]   An upper bound on the double Roman domination number [J].
Amjadi, J. ;
Nazari-Moghaddam, S. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) :81-89
[5]   Total Roman domination subdivision number in graphs [J].
Amjadi, Jafar .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2020, 5 (02) :157-168
[6]   Domination subdivision numbers of trees [J].
Aram, H. ;
Sheikholeslami, S. M. ;
Favaron, O. .
DISCRETE MATHEMATICS, 2009, 309 (04) :622-628
[7]   Roman domination subdivision number of graphs [J].
Atapour, M. ;
Sheikholeslami, S. M. ;
Khodkar, Abdollah .
AEQUATIONES MATHEMATICAE, 2009, 78 (03) :237-245
[8]   Bounds on the outer-independent double Italian domination number [J].
Azvin, Farzaneh ;
Rad, Nader Jafari ;
Volkmann, Lutz .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) :123-136
[9]   Double Roman domination [J].
Beeler, Robert A. ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2016, 211 :23-29
[10]  
Chellai M., 2020, J. Combin. Math. Combin. Comput., P141