Distribution of complex transmission eigenvalues for spherically stratified media

被引:41
作者
Colton, David [1 ]
Leung, Yuk-J [1 ]
Meng, Shixu [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
inverse scattering; complex transmission eigenvalues; spectral theory;
D O I
10.1088/0266-5611/31/3/035006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we employ transformation operators and Levinson's density formula to study the distribution of interior transmission eigenvalues for a spherically stratified media. In particular, we show that under smoothness condition on the index of refraction that there exist an infinite number of complex eigenvalues and there exist situations when there are no real eigenvalues. We also consider the case when absorption is present and show that under appropriate conditions there exist an infinite number of eigenvalues near the real axis.
引用
收藏
页数:19
相关论文
共 23 条
[1]   Reconstruction of the wave speed from transmission eigenvalues for the spherically symmetric variable-speed wave equation [J].
Aktosun, Tuncay ;
Papanicolaou, Vassilis G. .
INVERSE PROBLEMS, 2013, 29 (06)
[2]   The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation [J].
Aktosun, Tuncay ;
Gintides, Drossos ;
Papanicolaou, Vassilis G. .
INVERSE PROBLEMS, 2011, 27 (11)
[3]  
BEURLING A, 1989, COLLECTED WORKS, V1
[4]  
Boas R., 1954, Entire Functions
[5]  
Cakoni F., 2014, A Qualitative Approach in Inverse Scattering Theory, Vvol 767
[6]   Transmission eigenvalues [J].
Cakoni, Fioralba ;
Haddar, Houssem .
INVERSE PROBLEMS, 2013, 29 (10)
[7]   THE INTERIOR TRANSMISSION EIGENVALUE PROBLEM [J].
Cakoni, Fioralba ;
Colton, David ;
Gintides, Drossos .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) :2912-2921
[10]   THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC ACOUSTIC-WAVES IN AN INHOMOGENEOUS-MEDIUM [J].
COLTON, D ;
MONK, P .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1988, 41 :97-125