From nanoporous to transparent MgAl2O4 spinel-Nanostructural flexibility by reaction densification of metastable powders

被引:9
作者
Dewitt, D. M. [1 ]
Shachar, M. H. [1 ]
Kodera, Y. [1 ]
Garay, J. E. [1 ]
机构
[1] Univ Calif San Diego, Mech & Aerosp Engn Dept, Mat Sci & Engn Program, Adv Mat Proc & Synth AMPS Lab, San Diego, CA 92103 USA
基金
美国国家科学基金会;
关键词
Nanocrystalline; Transparent ceramics; Porous ceramics; High temperature energy absorption; Reaction kinetics; Spark Plasma Sintering (SPS); Current-Activated; Pressure-Assisted Densification (CAPAD); MAGNESIUM ALUMINATE SPINEL; PLASMA-SINTERING SPS; PRESSURE-ASSISTED DENSIFICATION; GAMMA-ALUMINA; GRAIN-SIZE; FABRICATION; INTERDIFFUSION; BEHAVIOR; DISCOLORATION; ABSORPTION;
D O I
10.1016/j.matdes.2021.110147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polycrystalline magnesium aluminate spinel (MgAl2O4) is one of the most important structural ceramics with proven applications as a hard, temperature resistant material and as a high strength optical window. Here, we present a study of the reaction densification of nano-sized MgO (nMgO) and metastable gamma-Al2O3 to form MgAl2O4 instead of the typical stable alpha-Al2O3 and micrometer-sized MgO (mu MgO). We show that the reaction kinetics of gamma-Al2O3 - mu MgO are substantially faster and occur at significantly lower temperatures compared to previous kinetic studies of alpha-Al2O3-mu MgO, revealing that they are not controlled by the same mechanism. We propose that the enhanced reaction rates are caused by short diffusion distances, faster diffusion through defected gamma-Al2O3 as well as similarities in crystal structure between products and reactants. Lastly, we show that understanding the reaction and densification kinetics of this reactant combination can be leveraged to produce a wide range of microstructures leading to nanoporous high temperature energy absorbing materials and highly dense optically transparent spinel. (C) 2021 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:11
相关论文
共 57 条
[1]   Effects of applied pressure on the densification rates in current-activated pressure-assisted densification (CAPAD) of nanocrystalline materials [J].
Alaniz, J. E. ;
Dupuy, A. D. ;
Kodera, Y. ;
Garay, J. E. .
SCRIPTA MATERIALIA, 2014, 92 :7-10
[2]   Development of synthesis and granulation process of MgAl2O4 powder for the fabrication of transparent ceramic [J].
Alhaji, A. ;
Taherian, M. H. ;
Ghorbani, S. ;
Sharifnia, S. A. .
OPTICAL MATERIALS, 2019, 98
[3]   Compressive properties and energy absorption behavior of Al-Al2O3 composite foam synthesized by space-holder technique [J].
Alizadeh, Mostafa ;
Mirzaei-Aliabadi, Morteza .
MATERIALS & DESIGN, 2012, 35 :419-424
[4]   Aluminium foams for transport industry [J].
Baumeister, J ;
Banhart, J ;
Weber, M .
MATERIALS & DESIGN, 1997, 18 (4-6) :217-220
[5]   Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders [J].
Bonnefont, Guillaume ;
Fantozzi, Gilbert ;
Trombert, Sandrine ;
Bonneau, Lionel .
CERAMICS INTERNATIONAL, 2012, 38 (01) :131-140
[6]   TRANSLUCENT SINTERED MGAL2O4 [J].
BRATTON, RJ .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1974, 57 (07) :283-286
[7]   Processing and mechanical behavior of Zn-Al-Cu porous alloys [J].
Casolco, S. R. ;
Dominguez, G. ;
Sandoval, D. ;
Garay, J. E. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 471 (1-2) :28-33
[8]   Low cost foam-gelcasting preparation and characterization of porous magnesium aluminate spinel (MgAl2O4) ceramics [J].
Deng, Xiangong ;
Wang, Junkai ;
Liu, Jianghao ;
Zhang, Haijun ;
Han, Lei ;
Zhang, Shaowei .
CERAMICS INTERNATIONAL, 2016, 42 (16) :18215-18222
[9]   High (10-3 s-1) densification rates at <0.25 homologous temperature in pressure assisted densification of nanocrystalline MgO: Effects of water absorption and grain size [J].
Dewitt, D. M. ;
Kodera, Y. ;
Garay, J. E. .
SCRIPTA MATERIALIA, 2019, 169 :33-37
[10]   Hydrogenous spinel γ-alumina structure [J].
Dong, Jinshi ;
Wang, Jun ;
Shi, Lu ;
Yang, Jiaqiang ;
Wang, Jianqiang ;
Shan, Bin ;
Shen, Meiqing .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (40) :27389-27396