Low energy excitation of the one-dimensional Kondo-necklace model

被引:8
|
作者
Chen, YG [1 ]
Yuan, QS [1 ]
Hong, C [1 ]
Zhang, YM [1 ]
机构
[1] Tongji Univ, Pohl Inst Solid State Phys, Shanghai 200092, Peoples R China
关键词
one-dimensional; Kondo-necklace model; Kondo-lattice model;
D O I
10.1016/S0375-9601(98)00369-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The one-dimensional Kondo-necklace model is investigated on the basis of bosonization. We prove that the model belongs to the same universality class as the one-dimensional half-filling Kondo lattice model at operator level, furthermore, the excitation and the gap formation are derived. We suggest that the spin gap of this model always exists for all finite J. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:167 / 171
页数:5
相关论文
共 50 条
  • [21] Low-energy dynamics of the one-dimensional multichannel Kondo-Heisenberg lattice
    Andrei, N
    Orignac, E
    PHYSICAL REVIEW B, 2000, 62 (06) : R3596 - R3599
  • [22] Exactly solvable model of a one-dimensional Kondo lattice
    Karnaukhov, IN
    PHYSICAL REVIEW B, 1997, 56 (08) : R4313 - R4316
  • [23] One-dimensional Kondo lattices
    Shibata, N
    DENSITY-MATRIX RENORMALIZATION: A NEW NUMERICAL METHOD IN PHYSICS, 1999, 528 : 303 - 310
  • [24] Hybridization oscillation in the one-dimensional Kondo-Heisenberg model with Kondo holes
    Neng Xie
    Danqing Hu
    Yi-feng Yang
    Scientific Reports, 7
  • [25] Hybridization oscillation in the one-dimensional Kondo-Heisenberg model with Kondo holes
    Xie, Neng
    Hu, Danqing
    Yang, Yi-feng
    SCIENTIFIC REPORTS, 2017, 7
  • [26] Low-energy excitation spectrum of one-dimensional dipolar quantum gases
    De Palo, S.
    Orignac, E.
    Citro, R.
    Chiofalo, M. L.
    PHYSICAL REVIEW B, 2008, 77 (21)
  • [27] EXCITATION SPECTRUM IN ONE-DIMENSIONAL HUBBARD MODEL
    OVCHINNIKOV, AA
    SOVIET PHYSICS JETP-USSR, 1970, 30 (06): : 1160 - +
  • [28] EXCITATION SPECTRUM OF ONE-DIMENSIONAL HUBBARD MODEL
    COLL, CF
    PHYSICAL REVIEW B, 1974, 9 (05): : 2150 - 2158
  • [29] Local quantum criticality of a one-dimensional Kondo insulator model
    Zhu, W.
    Zhu, Jian-Xin
    PHYSICAL REVIEW B, 2018, 97 (24)
  • [30] Lattice path integral approach to the one-dimensional Kondo model
    Bortz, M
    Klümper, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (25): : 6413 - 6436