Strong convergence theorems for the general split variational inclusion problem in Hilbert spaces

被引:4
作者
Chang, Shih-sen [1 ]
Wang, Lin [1 ]
机构
[1] Yunnan Univ Finance & Econ, Coll Stat & Math, Kunming 650221, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
general split variational inclusion problem; split feasibility problem; split optimization problem; quasi-nonexpansive mapping; zero point; resolvent mapping; PROXIMAL POINT ALGORITHM; CQ-ALGORITHM; FEASIBILITY; SETS;
D O I
10.1186/1687-1812-2014-171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to introduce and study a general split variational inclusion problem in the setting of infinite-dimensional Hilbert spaces. Under suitable conditions, we prove that the sequence generated by the proposed new algorithm converges strongly to a solution of the general split variational inclusion problem. As a particular case, we consider the algorithms for a split feasibility problem and a split optimization problem and give some strong convergence theorems for these problems in Hilbert spaces.
引用
收藏
页数:14
相关论文
共 25 条
[1]  
Ansari Q. H., 2014, it Nonlinear Analysis: Approximation Theory, P281, DOI DOI 10.1007/978-81-322-1883-8_9
[3]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[4]  
Censor Y., 1994, Numerical Algorithms, V8, P221, DOI DOI 10.1007/BF02142692
[5]   A unified approach for inversion problems in intensity-modulated radiation therapy [J].
Censor, Yair ;
Bortfeld, Thomas ;
Martin, Benjamin ;
Trofimov, Alexei .
PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (10) :2353-2365
[6]   Perturbed projections and subgradient projections for the multiple-sets split feasibility problem [J].
Censor, Yair ;
Motova, Avi ;
Segal, Alexander .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) :1244-1256
[7]   The Split Common Fixed Point Problem for Total Asymptotically Strictly Pseudocontractive Mappings [J].
Chang, S. S. ;
Wang, L. ;
Tang, Y. K. ;
Yang, L. .
JOURNAL OF APPLIED MATHEMATICS, 2012,
[8]   Multiple-Set Split Feasibility Problems for Asymptotically Strict Pseudocontractions [J].
Chang, Shih-Sen ;
Cho, Yeol Je ;
Kim, J. K. ;
Zhang, W. B. ;
Yang, L. .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[9]   On Chidume's open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces [J].
Chang, SS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 216 (01) :94-111
[10]  
Chang SS, 2010, J INEQUAL APPL, V2010, P14, DOI DOI 10.1155/2010/869684