A New Class of Generalized Polynomials Associated with Hermite and Euler Polynomials

被引:27
作者
Pathan, M. A. [1 ]
Khan, Waseem A. [2 ]
机构
[1] KFRI, CMSS, Peechi PO, Trichur 680653, Kerala, India
[2] Integral Univ, Dept Math, Lucknow 226026, Uttar Pradesh, India
关键词
Hermite polynomials; Euler polynomials; Hermite-Euler polynomials; summation formulae; symmetric identities; SUM;
D O I
10.1007/s00009-015-0551-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new class of generalized polynomials associated with the modified Milne-Thomson's polynomials of degree n and order alpha introduced by Dere and Simsek. The concepts of Euler numbers E (n) , Euler polynomials E (n) (x), generalized Euler numbers E (n) (a, b), generalized Euler polynomials E (n) (x; a, b, c) of Luo et al., Hermite-Bernoulli polynomials of Dattoli et al. and of Pathan are generalized to the one which is called the generalized polynomials depending on three positive real parameters. Numerous properties of these polynomials and some relationships between E (n) , E (n) (x), E (n) (a, b), E (n) (x; a, b, c) and are established. Some implicit summation formulae and general symmetry identities are derived using different analytical means and applying generating functions.
引用
收藏
页码:913 / 928
页数:16
相关论文
共 21 条
[1]  
[Anonymous], 1984, A Treatise on Generating Functions
[2]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[3]   Multidimensional extensions of the Bernoulli and Appell polynomials [J].
Bretti, G ;
Ricci, PE .
TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (03) :415-428
[4]  
Dattoli G., 1999, REND MATH, V19, P385
[5]   Hermite base Bernoulli type polynomials on the umbral algebra [J].
Dere, R. ;
Simsek, Y. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2015, 22 (01) :1-5
[6]   Implicit summation formulae for Hermite and related polynomials [J].
Khan, Subuhi ;
Pathan, M. A. ;
Hassan, Nader Ali Makboul ;
Yasmin, Ghazala .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :408-416
[7]   Notes on generalization of the Bernoulli type polynomials [J].
Kurt, Burak ;
Simsek, Yilmaz .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :906-911
[8]  
Luo Q.-M., 2003, Int. J. Math. Math. Sci, P3769, DOI [DOI 10.1155/S0161171203112070, 10.1155/S0161171203112070]
[9]  
Luo Q.-M., 2003, Int. J. Math. Math. Sci, P3893, DOI DOI 10.1155/S016117120321108X
[10]  
Milne-Thomsons LM, 1933, P LOND MATH SOC S, V35, P514