Estimation of population growth and extinction parameters from noisy data

被引:0
作者
Lindley, ST [1 ]
机构
[1] NOAA, Santa Cruz Lab, Santa Cruz, CA 95060 USA
关键词
diffusion approximation; extinction model; grizzly bear; Yellowstone population; Kalman filter; measurement errors bids parameter estimates; parameter estimation; random walk; sea otter; California population; state-space model;
D O I
10.1890/1051-0761(2003)013[0806:EOPGAE]2.0.CO;2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The random-walk-with-drift model of population dynamics is an important tool in conservation biology, partly because its parameters are easily estimated from periodic observations of population size. Estimating the model with noisy data is problematic, however, because the commonly used estimators of process variation are biased if population abundance measurements are imprecise, and a recently developed method that attempts to remove this bias is not robust. In this paper, I show how the random-walk-with-drift model can be applied to noisy time series of population estimates by converting the random-walk-with-drift model to state-space form and applying the Kalman filter to yield the likelihood of the data. The likelihood function allows the variances of the process error and measurement error and the growth rate of the population to be estimated in a way that is robust and fully supported by statistical theory. Comparative analysis using simulated data indicates that the Kalman-filter method reduces the bias in estimates of process variance without yielding negative variance estimates. I apply the method to California sea otter and Yellowstone grizzly bear data to illustrate how the method (and simple extensions) can be used to assess the status of real populations. California sea otters appear to have little risk of extinction over the next 100 years although the population may not be secure over the long term if a recent apparent cessation of population growth persists. The grizzly bear population appears to have responded positively to the 1988 Yellowstone fires, and if the population continues to grow at the average rate observed over the study period, it is extremely unlikely to go extinct.
引用
收藏
页码:806 / 813
页数:8
相关论文
共 50 条
  • [31] System parameter estimation with input/output noisy data and missing measurements
    Chen, JM
    Chen, BS
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (06) : 1548 - 1558
  • [32] Parameter Estimation by Picard-Iteration for Biochemical Networks with Noisy Data
    Naber, Maike
    von Haeseler, Friedrich
    Rudolph, Nadine
    Huber, Heinrich J.
    Findeisen, Rolf
    IFAC PAPERSONLINE, 2018, 51 (19): : 64 - 67
  • [33] Estimation of single-neuron model parameters from spike train data
    Hayes, RD
    Byrne, JH
    Cox, SJ
    Baxter, DA
    NEUROCOMPUTING, 2005, 65 : 517 - 529
  • [34] Real-Time Estimation of Pathological Tremor Parameters from Gyroscope Data
    Gallego, Juan A.
    Rocon, Eduardo
    Roa, Javier O.
    Moreno, Juan C.
    Pons, Jose L.
    SENSORS, 2010, 10 (03) : 2129 - 2149
  • [35] A High Precision Method for Induction Machine Parameters Estimation From Manufacturer Data
    Amaral, Gleison Fransoares Vasconcelos
    Baccarini, Joao Marcos Rabelo
    Coelho, Francisco Carlos Rodrigues
    Rabelo, Lane Maria
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2021, 36 (02) : 1226 - 1233
  • [36] Estimation of Equivalent Circuit Parameters of Transformer and Induction Motor from Load Data
    Bhowmick, Diptarshi
    Manna, Mithun
    Chowdhury, Suparna Kar
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (03) : 2784 - 2791
  • [37] Sparse estimation from noisy observations of an overdetermined linear system
    Dai, Liang
    Pelckmans, Kristiaan
    AUTOMATICA, 2014, 50 (11) : 2845 - 2851
  • [38] SG parameters estimation based on synchrophasor data
    Ahmadzadeh-Shooshtari, Babak
    Torkzadeh, Roozbeh
    Kordi, Meysam
    Marzooghi, Hesamoddin
    Eghtedarnia, Fariborz
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2018, 12 (12) : 2958 - 2967
  • [39] Pole Recovery From Noisy Data on Imaginary Axis
    Ying, Lexing
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
  • [40] Likelihood Methods for Single-Diode Model Parameter Estimation from Noisy I-V Curve Data
    Zaharatos, Brian
    Campanelli, Mark
    Hansen, Clifford
    Emery, Keith
    Tenorio, Luis
    2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, : 2850 - 2855