Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes

被引:1247
作者
Yan, Jun [1 ]
Fan, Zhuangjun [1 ]
Wei, Tong [1 ]
Qian, Weizhong [2 ]
Zhang, Milin [1 ]
Wei, Fei [2 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Peoples R China
[2] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
关键词
CARBON NANOTUBE COMPOSITES; AMORPHOUS MANGANESE OXIDE; ELECTROPHORETIC DEPOSITION; ELECTROCHEMICAL PROPERTIES; NANOSTRUCTURED MNO2; PERFORMANCE; DIOXIDE; STORAGE; ENERGY; SPECTROSCOPY;
D O I
10.1016/j.carbon.2010.06.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a quick and easy method to synthesize graphene-MnO2 composites through the self-limiting deposition of nanoscale MnO2 on the surface of graphene under microwave irradiation. These nanostructured graphene-MnO2 hybrid materials are used for investigation of electrochemical behaviors. Graphene-MnO2 composite (78 wt.% MnO2) displays the specific capacitance as high as 310 F g(-1) at 2 mV s(-1) (even 228 F g(-1) at 500 mV s(-1)), which is almost three times higher than that of pure graphene (104 F g(-1)) and birnessite-type MnO2 (103 F g(-1)). Interestingly, the capacitance retention ratio is highly kept over a wide range of scan rates (88% at 100 mV s(-1) and 74% at 500 mV s(-1)). The improved high-rate electrochemical performance may be attributed to the increased electrode conductivity in the presence of graphene network, the increased effective interfacial area between MnO2 and the electrolyte, as well as the contact area between MnO2 and graphene. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3825 / 3833
页数:9
相关论文
共 50 条
[21]   Hydrothermal synthesis of CuO@MnO2 on nitrogen-doped multiwalled carbon nanotube composite electrodes for supercapacitor applications [J].
Kakani, Vijay ;
Ramesh, Sivalingam ;
Yadav, H. M. ;
Bathula, Chinna ;
Basivi, Praveen Kumar ;
Palem, Ramasubba Reddy ;
Kim, Heung Soo ;
Pasupuletti, Visweswara Rao ;
Lee, Handol ;
Kim, Hakil .
SCIENTIFIC REPORTS, 2022, 12 (01)
[22]   MnO2 decorated on electrospun carbon nanofiber/graphene composites as supercapacitor electrode materials [J].
Lee, Do Geum ;
Kim, Bo-Hye .
SYNTHETIC METALS, 2016, 219 :115-123
[23]   Graphene Nanoplatelet-Supported V2O5 Hybrid Composites for Supercapacitor Application [J].
Oneeb, Muhammad ;
Iqbal, Javed ;
Mumtaz, Asifa ;
Inayat, Abid ;
Ullah, Qudrat ;
Khan, Ahmad Hussan .
JOURNAL OF ELECTRONIC MATERIALS, 2025, 54 (08) :6561-6574
[24]   MnO2/Carbon Composites for Supercapacitor: Synthesis and Electrochemical Performance [J].
Wu, Dan ;
Xie, Xiubo ;
Zhang, Yuping ;
Zhang, Dongmei ;
Du, Wei ;
Zhang, Xiaoyu ;
Wang, Bing .
FRONTIERS IN MATERIALS, 2020, 7
[25]   Behavior of NiO-MnO2/MWCNT composites for use in a supercapacitor [J].
Hwang, Seung-Gi ;
Ryu, Seong-Hyeon ;
Yun, Su-Ryeon ;
Ko, Jang Myoun ;
Kim, Kwang Man ;
Ryu, Kwang-Sun .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 130 (1-2) :507-512
[26]   Facile synthesis of mesoporous MnO2/C spheres for supercapacitor electrodes [J].
Pan, Yanmei ;
Mei, Zhousheng ;
Yang, Zeheng ;
Zhang, Weixin ;
Pei, Bo ;
Yao, Hongxu .
CHEMICAL ENGINEERING JOURNAL, 2014, 242 :397-403
[27]   Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor [J].
Demarconnay, L. ;
Raymundo-Pinero, E. ;
Beguin, F. .
JOURNAL OF POWER SOURCES, 2011, 196 (01) :580-586
[28]   Silicon-MnO2 core-shell nanowires as electrodes for micro-supercapacitor application [J].
Soam, Ankur ;
Parida, Kaushik ;
Kuma, Rahul ;
Kavle, Pravin ;
Dusane, Rajiv O. .
CERAMICS INTERNATIONAL, 2019, 45 (15) :18914-18923
[29]   Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review [J].
Cai, Xinwei ;
Sun, Kangkang ;
Qiu, Yangshuai ;
Jiao, Xuan .
CRYSTALS, 2021, 11 (08)
[30]   MnO2-coated graphitic petals for supercapacitor electrodes [J].
Xiong, Guoping ;
Hembram, K. P. S. S. ;
Reifenberger, R. G. ;
Fisher, Timothy S. .
JOURNAL OF POWER SOURCES, 2013, 227 :254-259