Improved robust model predictive control with structured uncertainty

被引:36
作者
Feng, Le [1 ]
Wang, Jian Liang
Poh, Eng Kee
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] DSO Natl Lab, Singapore 118230, Singapore
关键词
model predictive control; linear matrix inequalities; structured uncertainty; parameter dependent Lyapunov function;
D O I
10.1016/j.jprocont.2007.01.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a dilation of the LMI characterization is presented to address constrained robust model predictive control (MPC) for a class of uncertain linear systems with structured time-varying uncertainties. The uncertainty is described in linear fractional transformation (LFT) form. By introducing slack variables and using parameter dependent Lyapunov functions, the design conservativeness is reduced compared with other existing MPC approaches. The proposed approach is applied to an industrial CSTR benchmark system to demonstrate the merits of our proposed solution. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:683 / 688
页数:6
相关论文
共 13 条
[1]   Continuous-time analysis, eigenstructure assignment, and H2 synthesis with enhanced linear matrix inequalities (LMI) characterizations [J].
Apkarian, PC ;
Tuan, HD ;
Bernussou, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (12) :1941-1946
[2]  
Cuzzola FA, 2002, AUTOMATICA, V38, P1183, DOI 10.1016/S0005-1098(02)00012-2
[3]   A new discrete-time robust stability conditions [J].
de Oliveira, MC ;
Bernussou, J ;
Geromel, JC .
SYSTEMS & CONTROL LETTERS, 1999, 37 (04) :261-265
[4]  
FENG L, 2004, P 8 INT C CONTR AUT, P2664
[5]   Robust filtering of discrete-time linear systems with parameter dependent Lyapunov functions [J].
Geromel, JC ;
De Oliveira, MC ;
Bernussou, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (03) :700-711
[6]   Robust constrained model predictive control using linear matrix inequalities [J].
Kothare, MV ;
Balakrishnan, V ;
Morari, M .
AUTOMATICA, 1996, 32 (10) :1361-1379
[7]   Robust MPC of constrained nonlinear systems based on interval arithmetic [J].
Limon, D ;
Bravo, JM ;
Alamo, T ;
Camacho, EF .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2005, 152 (03) :325-332
[8]   A stabilizing model-based predictive control algorithm for nonlinear systems [J].
Magni, L ;
De Nicolao, G ;
Magnani, L ;
Scattolini, R .
AUTOMATICA, 2001, 37 (09) :1351-1362
[9]   A new optimization algorithm with application to nonlinear MPC [J].
Martinsen, F ;
Biegler, LT ;
Foss, BA .
JOURNAL OF PROCESS CONTROL, 2004, 14 (08) :853-865
[10]  
UPPAL A, 1974, CHEM ENG SCI, V29, P1967