One-step radiation synthesis of agarose/polyacrylamide double-network hydrogel with extremely excellent mechanical properties

被引:71
作者
Lin, Tingrui [1 ]
Bai, Qingwen [2 ]
Peng, Jing [1 ]
Xu, Ling [3 ]
Li, Jiuqiang [1 ]
Zhai, Maolin [1 ]
机构
[1] Peking Univ, Beijing Natl Lab Mol Sci, Radiochem & Radiat Chem Key Lab Fundamental Sci, Key Lab Polymer Chem & Phys,Minist Educ,Coll Chem, Beijing 100871, Peoples R China
[2] Peking Univ, Beijing Natl Lab Mol Sci, Key Lab Polymer Chem & Phys, Minist Educ,Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[3] Xiamen Univ, State Key Lab Mol Vaccinol & Mol Diagnost, Sch Publ Hlth, Xiamen 161102, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Radiation synthesis; Agarose/polyacrylamide; Hydrogels; Double-network; Mechanical properties; Energy dissipation; NANOCOMPOSITE HYDROGELS; CROSS-LINKING; HIGH-TOUGHNESS; STRENGTH; GEL; FRACTURE; POLYMERIZATION; ROBUST;
D O I
10.1016/j.carbpol.2018.07.070
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A facile one-step radiation method is first developed to synthesize agarose/polyacrylamide (AG/PAM) double-network (DN) hydrogel. Compared to other synthetic methods of DN hydrogels, our synthesis method endows the resultant AG/PAM DN hydrogel with not only top-level tensile properties with a tensile strength of 1263 +/- 59 kPa and an elongation at break of 3406 +/- 143%, but also highest compression properties with a compression strength of 140 +/- 3 MPa and a fracture compression strain of above 99.9%. An expanding-necking phenomenon during compression process of AG/PAM DN hydrogel were observed. We propose a chain pushing-in model to interpret the energy dissipation mechanism accounting for the super-compressibility of AG/PAM DN hydrogel. This novel radiation synthesis strategy provides an insight into the development of DN hydrogels with extremely excellent mechanical properties.
引用
收藏
页码:72 / 81
页数:10
相关论文
共 49 条
[1]   Three-Dimensional Printing Fiber Reinforced Hydrogel Composites [J].
Bakarich, Shannon E. ;
Gorkin, Robert, III ;
Panhuis, Marc In Het ;
Spinks, Geoffrey M. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) :15998-16006
[2]   ADSORBED METAL-IONS AS STABILIZERS FOR THE THERMAL-DEGRADATION OF POLYACRYLAMIDE [J].
BURROWS, HD ;
ELLIS, HA ;
UTAH, SI .
POLYMER, 1981, 22 (12) :1740-1744
[3]   High-toughness polyacrylamide gel containing hydrophobic crosslinking and its double network gel [J].
Chen, Jian ;
Ao, Yinyong ;
Lin, Tingrui ;
Yang, Xin ;
Peng, Jing ;
Huang, Wei ;
Li, Jiuqiang ;
Zhai, Maolin .
POLYMER, 2016, 87 :73-80
[4]   Fundamentals of double network hydrogels [J].
Chen, Qiang ;
Chen, Hong ;
Zhu, Lin ;
Zheng, Jie .
JOURNAL OF MATERIALS CHEMISTRY B, 2015, 3 (18) :3654-3676
[5]   A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Self-Healing Properties [J].
Chen, Qiang ;
Zhu, Lin ;
Chen, Hong ;
Yan, Hongli ;
Huang, Lina ;
Yang, Jia ;
Zheng, Jie .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (10) :1598-1607
[6]   Fracture of the Physically Cross-Linked First Network in Hybrid Double Network Hydrogels [J].
Chen, Qiang ;
Zhu, Lin ;
Huang, Lina ;
Chen, Hong ;
Xu, Kun ;
Tan, Yin ;
Wang, Pixin ;
Zheng, Jie .
MACROMOLECULES, 2014, 47 (06) :2140-2148
[7]   A Robust, One-Pot Synthesis of Highly Mechanical and Recoverable Double Network Hydrogels Using Thermoreversible Sol-Gel Polysaccharide [J].
Chen, Qiang ;
Zhu, Lin ;
Zhao, Chao ;
Wang, Qiuming ;
Zheng, Jie .
ADVANCED MATERIALS, 2013, 25 (30) :4171-4176
[8]   Growth Factors, Matrices, and Forces Combine and Control Stem Cells [J].
Discher, Dennis E. ;
Mooney, David J. ;
Zandstra, Peter W. .
SCIENCE, 2009, 324 (5935) :1673-1677
[9]   Double-network hydrogels with extremely high mechanical strength [J].
Gong, JP ;
Katsuyama, Y ;
Kurokawa, T ;
Osada, Y .
ADVANCED MATERIALS, 2003, 15 (14) :1155-+
[10]   Super tough double network hydrogels and their application as biomaterials [J].
Haque, Md. Anamul ;
Kurokawa, Takayuki ;
Gong, Jian Ping .
POLYMER, 2012, 53 (09) :1805-1822