The Earth Observation Data for Habitat Monitoring (EODHaM) system

被引:49
|
作者
Lucas, Richard [1 ]
Blonda, Palma [2 ]
Bunting, Peter [3 ]
Jones, Gwawr [3 ]
Inglada, Jordi [4 ]
Arias, Marcela [4 ]
Kosmidou, Vasiliki [5 ]
Petrou, Zisis I. [5 ]
Manakos, Ioannis [5 ]
Adamo, Maria
Charnock, Rebecca - [3 ]
Tarantino, Cristina [2 ]
Mucher, Caspar A. [6 ]
Jongman, Rob H. G. [6 ]
Kramer, Henk [6 ]
Arvor, Damien [7 ]
Honrado, Joao Pradinho [8 ,9 ]
Mairota, Paola [10 ]
机构
[1] Univ New S Wales, Sch Biol Earth & Environm Sci, Ctr Ecosyst Sci, Kensington, NSW 2052, Australia
[2] CNR, Natl Res Council, Inst Intelligent Syst Automat, ISSIA, I-70126 Bari, Italy
[3] Aberystwyth Univ, Inst Geog & Earth Sci, Aberystwyth SY23 3DB, Dyfed, Wales
[4] CESBIO, CNES CNRS UPS IRD, F-31401 Toulouse 9, France
[5] Inst Informat Technol, Ctr Res & Technol Hellas, Thessaloniki 57001, Greece
[6] Wageningen UR, Alterra, NL-6708 PB Wageningen, Netherlands
[7] MTD Montpellier, ESPACE DEV, IRD UMR 228, F-34093 Montpellier, France
[8] InBIO CIBIO, P-4169007 Oporto, Portugal
[9] Univ Porto, Fac Ciencias, Edificio Biol FC4, P-4169007 Oporto, Portugal
[10] Univ Bari, Dept Agroenvironm & Terr Sci, I-70126 Bari, Italy
来源
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION | 2015年 / 37卷
基金
欧盟地平线“2020”;
关键词
Habitat; Land cover; Classification; Monitoring; Remote sensing; VEGETATION; CLASSIFICATIONS; BIODIVERSITY; REFLECTANCE; PHENOLOGY; IMAGERY; MODEL; FIELD;
D O I
10.1016/j.jag.2014.10.011
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [21] Remote Sensing and GIS for Habitat Quality Monitoring: New Approaches and Future Research
    Zlinszky, Andras
    Heilmeier, Hermann
    Balzter, Heiko
    Czucz, Balint
    Pfeifer, Norbert
    REMOTE SENSING, 2015, 7 (06) : 7987 - 7994
  • [22] Earth observation data for seabirds and their habitats: An introduction
    Goddijn-Murphy, Lonneke
    O'Hanlon, Nina J.
    James, Neil A.
    Masden, Elizabeth A.
    Bond, Alexander L.
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 24
  • [23] Multi-Mission Earth Observation Data Processing System
    Mhangara, Paidamwoyo
    Mapurisa, Willard
    SENSORS, 2019, 19 (18)
  • [24] Assessing optical earth observation systems for mapping and monitoring temporary ponds in arid areas
    Soti, Valerie
    Tran, Annelise
    Bailly, Jean-Stephane
    Puech, Christian
    Lo Seen, Danny
    Begue, Agnes
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2009, 11 (05): : 344 - 351
  • [25] A composite indicator for assessing habitat quality of riparian forests derived from Earth observation data
    Riedler, Barbara
    Pernkopf, Lena
    Strasser, Thomas
    Lang, Stefan
    Smith, Geoff
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 37 : 114 - 123
  • [26] The Wide Area Grid Testbed for Flood Monitoring Using Earth Observation Data
    Kussul, Nataliia N.
    Shelestov, Andrii Yu.
    Skakun, Sergii V.
    Li, Guoqing
    Kussul, Olga M.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (06) : 1746 - 1751
  • [27] Monitoring sustainable development by means of earth observation data and machine learning: a review
    Ferreira, Bruno
    Iten, Muriel
    Silva, Rui G.
    ENVIRONMENTAL SCIENCES EUROPE, 2020, 32 (01)
  • [28] Deciphering tropical tree communities using earth observation data and machine learning
    Bodh, Rahul
    Padalia, Hitendra
    Pangtey, Divesh
    Rai, Ishwari Datt
    Nandy, Subrata
    Reddy, C. Sudhakar
    CURRENT SCIENCE, 2023, 124 (06): : 704 - 712
  • [29] Satellite Earth observation data to identify anthropogenic pressures in selected protected areas
    Nagendra, Harini
    Mairota, Paola
    Marangi, Carmela
    Lucas, Richard
    Dimopoulos, Panayotis
    Honrado, Joao Pradinho
    Niphadkar, Madhura
    Mucher, Caspar A.
    Tomaselli, Valeria
    Panitsa, Maria
    Tarantino, Cristina
    Manakos, Ioannis
    Blonda, Palma
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 37 : 124 - 132
  • [30] Assimilation of Earth Observation Data for Crop Yield Estimation in Smallholder Agricultural Systems
    Sisheber, Biniam
    Marshall, Michael
    Mengistu, Daniel
    Nelson, Andrew
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 557 - 572