Integrating Poly-Silicon and InGaZnO Thin-Film Transistors for CMOS Inverters

被引:52
作者
Chen, ChangDong [1 ]
Yang, Bo-Ru [1 ]
Liu, Chuan [1 ]
Zhou, Xing-Yu [2 ]
Hsu, Yuan-Jun [2 ]
Wu, Yuan-Chun [2 ]
lm, Jang-Soon [2 ]
Lu, Po-Yen [2 ]
Wong, Man [3 ]
Kwok, Hoi-Sing [3 ]
Shieh, Han-Ping D. [4 ,5 ]
机构
[1] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Sch Elect & Informat Technol, Guangzhou 510275, Guangdong, Peoples R China
[2] Shenzhen China Star Optoelect Technol Co Ltd, Shenzhen 510000, Peoples R China
[3] Hong Kong Univ Sci & Technol, State Key Lab Adv Displays & Optoelect Technol, Hong Kong 999077, Hong Kong, Peoples R China
[4] Natl Chiao Tung Univ, Dept Photon, Hsinchu 30010, Taiwan
[5] Natl Chiao Tung Univ, Display Inst, Hsinchu 30010, Taiwan
基金
国家高技术研究发展计划(863计划);
关键词
InGaZnO; hydrogenation; inverter; LTPS; thin-film transistors (TFTs); PLASMA HYDROGENATION; ROOM-TEMPERATURE; CIRCUITS; TFTS;
D O I
10.1109/TED.2017.2731205
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The applications of a-InGaZnO thin-film transistors (TFTs) to logic circuits have been limited owing to the intrinsic n-channel operation. In this paper, we demonstrated a hybrid inverter constructed by p-channel low-temperature poly-silicon (LTPS) TFTs and n-channel amorphous-indium-gallium-zinc-oxide (a-IGZO) TFTs. Hydrogenated LTPS TFTs and a-IGZO TFTs have been successfully fabricated on the same panel, followed by a rapid thermal annealing treatment to remove the hydrogens in the a-IGZO TFTs. The resulted hybrid inverter exhibits large noise margin closed to V-DD/2 and a high voltage gain as 68.3. Due to the complementary configurations in the static state, the inverter shows small current and thus consumes low power in hundreds of picowatts. As all the fabrication processes are compatible with conventional techniques, the reported results may open new opportunities in circuit design and applications for oxide TFTs.
引用
收藏
页码:3668 / 3671
页数:4
相关论文
共 20 条
[1]   Plasma hydrogenation of metal-induced laterally crystallized thin film transistors [J].
Bhat, G ;
Kwok, H ;
Wong, M .
IEEE ELECTRON DEVICE LETTERS, 2000, 21 (02) :73-75
[2]   Laser crystallised poly-Si TFTs for AMLCDs [J].
Brotherton, SD ;
Ayres, JR ;
Edwards, MJ ;
Fisher, CA ;
Glaister, C ;
Gowers, JP ;
McCulloch, DJ ;
Trainor, M .
THIN SOLID FILMS, 1999, 337 (1-2) :188-195
[3]   STUDY ON HYDROGENATION OF POLYSILICON THIN-FILM TRANSISTORS BY ION-IMPLANTATION [J].
CAO, M ;
ZHAO, TM ;
SARASWAT, KC ;
PLUMMER, JD .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1995, 42 (06) :1134-1140
[4]   Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates [J].
Cao, Qing ;
Kim, Hoon-sik ;
Pimparkar, Ninad ;
Kulkarni, Jaydeep P. ;
Wang, Congjun ;
Shim, Moonsub ;
Roy, Kaushik ;
Alam, Muhammad A. ;
Rogers, John A. .
NATURE, 2008, 454 (7203) :495-U4
[5]   Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors [J].
Chen, Haitian ;
Cao, Yu ;
Zhang, Jialu ;
Zhou, Chongwu .
NATURE COMMUNICATIONS, 2014, 5
[6]   High-Speed Pseudo-CMOS Circuits Using Bulk Accumulation a-IGZO TFTs [J].
Chen, Yuanfeng ;
Geng, Di ;
Mativenga, Mallory ;
Nam, Hyoungsik ;
Jang, Jin .
IEEE ELECTRON DEVICE LETTERS, 2015, 36 (02) :153-155
[7]   1-V Full-Swing Depletion-Load a-In-Ga-Zn-O Inverters for Back-End-of-Line Compatible 3D Integration [J].
Chi, Li-Jen ;
Yu, Ming-Jiue ;
Chang, Yu-Hong ;
Hou, Tuo-Hung .
IEEE ELECTRON DEVICE LETTERS, 2016, 37 (04) :441-444
[8]   The path to ubiquitous and low-cost organic electronic appliances on plastic [J].
Forrest, SR .
NATURE, 2004, 428 (6986) :911-918
[9]   30 μm- Pitch Oxide TFT-Based Gate Driver Design for Small-Size, High-Resolution, and Narrow-Bezel Displays [J].
Geng, Di ;
Chen, Yuan Feng ;
Mativenga, Mallory ;
Jang, Jin .
IEEE ELECTRON DEVICE LETTERS, 2015, 36 (08) :805-807
[10]   Pseudo-CMOS: A Design Style for Low-Cost and Robust Flexible Electronics [J].
Huang, Tsung-Ching ;
Fukuda, Kenjiro ;
Lo, Chun-Ming ;
Yeh, Yung-Hui ;
Sekitani, Tsuyoshi ;
Someya, Takao ;
Cheng, Kwang-Ting .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (01) :141-150