Medullary Thymic Epithelial Stem Cells Maintain a Functional Thymus to Ensure Lifelong Central T Cell Tolerance

被引:103
作者
Sekai, Miho [1 ,2 ]
Hamazaki, Yoko [1 ]
Minato, Nagahiro [1 ]
机构
[1] Kyoto Univ, Grad Sch Med, Dept Immunol & Cell Biol, Sakyo Ku, Kyoto 6068501, Japan
[2] Kyoto Univ, Grad Sch Biostudies, Sakyo Ku, Kyoto 6068501, Japan
关键词
KERATINOCYTE GROWTH-FACTOR; PROGENITOR CELLS; SELF-TOLERANCE; ADULT THYMUS; MICE; DIFFERENTIATION; THYMOPOIESIS; REGENERATION; RENEWAL; MICROENVIRONMENT;
D O I
10.1016/j.immuni.2014.10.011
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Medullary thymic epithelial cells (mTECs) are crucial for central T cell self-tolerance. Although progenitors of mTECs have been demonstrated in thymic organogenesis, the mechanism for postnatal mTEC maintenance remains elusive. We demonstrate that implantation of embryonic TECs expressing claudin-3 and claudin-4 (Cld3,4) in a medulla-defective thymic microenvironment restores medulla formation and suppresses multiorgan autoimmunity throughout life. A minor SSEA-1(+) fraction within the embryonic Cld3,4(hi) TECs contained self-renewable clonogenic TECs, capable of preferentially generating mature mTECs in vivo. Adult SSEA-1(+)Cld3,4(hi) TECs retained mTEC reconstitution potential, although the activity decreased. The clonogenicity of TECs also declined rapidly after birth in wild-type mice, whereas it persisted in Rag2(-/-) adult mice with defective thymopoiesis. The results suggest that unipotent mTEC-restricted stem cells that develop in the embryo have the capacity to functionally reconstitute the thymic medulla long-term, thus ensuring lifelong central T cell self-tolerance.
引用
收藏
页码:753 / 761
页数:9
相关论文
共 47 条
[1]   TNF receptor family signaling in the development and functions of medullary thymic epithelial cells [J].
Akiyama, Taishin ;
Shinzawa, Miho ;
Akiyama, Nobuko .
FRONTIERS IN IMMUNOLOGY, 2012, 3
[2]   Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration [J].
Alpdogan, Ö ;
Hubbard, VM ;
Smith, OM ;
Patel, N ;
Lu, S ;
Goldberg, GL ;
Gray, DH ;
Feinman, J ;
Kochman, AA ;
Eng, JM ;
Suh, D ;
Muriglan, SJ ;
Boyd, RL ;
van den Brink, MRM .
BLOOD, 2006, 107 (06) :2453-2460
[3]   Lymphostromal interactions in thymic development and function [J].
Anderson, G ;
Jenkinson, EJ .
NATURE REVIEWS IMMUNOLOGY, 2001, 1 (01) :31-40
[4]   Thymic epithelial cells: working class heroes for T cell development and repertoire selection [J].
Anderson, Graham ;
Takahama, Yousuke .
TRENDS IN IMMUNOLOGY, 2012, 33 (06) :256-263
[5]   Projection of an immunological self shadow within the thymus by the aire protein [J].
Anderson, MS ;
Venanzi, ES ;
Klein, L ;
Chen, ZB ;
Berzins, SP ;
Turley, SJ ;
von Boehmer, H ;
Bronson, R ;
Dierich, A ;
Benoist, C ;
Mathis, D .
SCIENCE, 2002, 298 (5597) :1395-1401
[6]   Generation of both cortical and Aire+ medullary thymic epithelial compartments from CD205+ progenitors [J].
Baik, Song ;
Jenkinson, Eric J. ;
Lane, Peter J. L. ;
Anderson, Graham ;
Jenkinson, William E. .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2013, 43 (03) :589-594
[7]   Tissue-Resident Adult Stem Cell Populations of Rapidly Self-Renewing Organs [J].
Barker, Nick ;
Bartfeld, Sina ;
Clevers, Hans .
CELL STEM CELL, 2010, 7 (06) :656-670
[8]   Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche [J].
Blanpain, C ;
Lowry, WE ;
Geoghegan, A ;
Polak, L ;
Fuchs, E .
CELL, 2004, 118 (05) :635-648
[9]   Formation of a functional thymus initiated by a postnatal epithelial progenitor cell [J].
Bleul, Conrad C. ;
Corbeaux, Tatiana ;
Reuter, Alexander ;
Fisch, Paul ;
Moenting, Juergen Schulte ;
Boehm, Thomas .
NATURE, 2006, 441 (7096) :992-996
[10]   Thymic medullary epithelial cell differentiation thymocyte emigration, and the control of autoimmunity require lymphoepithelial cross talk via LTβR [J].
Boehm, T ;
Scheu, S ;
Pfeffer, K ;
Bleul, CC .
JOURNAL OF EXPERIMENTAL MEDICINE, 2003, 198 (05) :757-769