Wetting transition in the two-dimensional Blume-Capel model: A Monte Carlo study

被引:41
|
作者
Albano, Ezequiel V. [1 ]
Binder, Kurt [2 ]
机构
[1] UNLP, Inst Fis Liquidos & Sistemas Biol IFLYSIB, CCT CONICET La Plata, RA-1900 La Plata, Argentina
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 06期
关键词
1ST-ORDER PHASE-TRANSITIONS; THIN ISING FILMS; CRITICAL-POINT; INTERFACE LOCALIZATION; COMPETING WALLS; SCALING THEORY; ADSORPTION; FLUID; BEHAVIOR; LATTICE;
D O I
10.1103/PhysRevE.85.061601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The wetting transition of the Blume-Capel model is studied by a finite-size scaling analysis of L x M lattices where competing boundary fields +/- H-1 act on the first or last row of the L rows in the strip, respectively. We show that using the appropriate anisotropic version of finite-size scaling, critical wetting in d = 2 is equivalent to a "bulk" critical phenomenon with exponents alpha = -1, beta = 0, and gamma = 3. These concepts are also verified for the Ising model. For the Blume-Capel model, it is found that the field strength H-1c(T) where critical wetting occurs goes to zero when the bulk second-order transition is approached, while H-1c(T) stays nonzero in the region where in the bulk a first-order transition from the ordered phase, with nonzero spontaneous magnetization, to the disordered phase occurs. Interfaces between coexisting phases then show interfacial enrichment of a layer of the disordered phase which exhibits in the second-order case a finite thickness only. A tentative discussion of the scaling behavior of the wetting phase diagram near the tricritical point is also given.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Monte Carlo study of the two-dimensional vector Blume-Capel model
    Dillon, Brianna S.
    Chiesa, Simone
    Scalettar, Richard T.
    PHYSICAL REVIEW B, 2010, 82 (18):
  • [2] MONTE-CARLO STUDY OF THE ANTIFERROMAGNETIC TWO-DIMENSIONAL BLUME-CAPEL MODEL
    KIMEL, JD
    BLACK, S
    CARTER, P
    WANG, YL
    PHYSICAL REVIEW B, 1987, 35 (07): : 3347 - 3353
  • [3] Critical and Tricritical Wetting in the Two-Dimensional Blume-Capel model
    Albano, Ezequiel V.
    Binder, Kurt
    JOURNAL OF STATISTICAL PHYSICS, 2014, 157 (03) : 436 - 455
  • [4] Monte Carlo study of the two-dimensional kinetic Blume-Capel model in a quenched random crystal field
    Vasilopoulos, Alexandros
    Vatansever, Zeynep Demir
    Vatansever, Erol
    Fytas, Nikolaos G.
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [5] MONTE-CARLO STUDY OF FCC BLUME-CAPEL MODEL
    JAIN, AK
    LANDAU, DP
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (03): : 231 - 231
  • [6] MONTE-CARLO STUDY OF THE FCC BLUME-CAPEL MODEL
    JAIN, AK
    LANDAU, DP
    PHYSICAL REVIEW B, 1980, 22 (01): : 445 - 452
  • [7] Monte Carlo study of the interfacial adsorption of the Blume-Capel model
    Fytas, Nikolaos G.
    Mainou, Argyro
    Theodorakis, Panagiotis E.
    Malakis, Anastasios
    PHYSICAL REVIEW E, 2019, 99 (01)
  • [8] INTERFACIAL ADSORPTION IN THE TWO-DIMENSIONAL BLUME-CAPEL MODEL
    SELKE, W
    HUSE, DA
    KROLL, DM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (15): : 3019 - 3027
  • [9] MICROCANONICAL MONTE-CARLO STUDY OF A 2-DIMENSIONAL BLUME-CAPEL MODEL
    CARE, CM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07): : 1481 - 1492
  • [10] Local persistence and blocking in the two-dimensional Blume-Capel model
    da Silva, R
    Dahmen, SR
    BRAZILIAN JOURNAL OF PHYSICS, 2004, 34 (4A) : 1469 - 1472