Decomposition numbers for Hecke algebras of type G(r, p, n): the (ε, q)-separated case

被引:4
作者
Hu, Jun [1 ,2 ]
Mathas, Andrew [2 ]
机构
[1] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
[2] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
MORITA EQUIVALENCES; REPRESENTATIONS;
D O I
10.1112/plms/pdr047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper studies the modular representation theory of the cyclotomic Hecke algebras of type G(r, p, n) with (e, q)-separated parameters. We show that the decomposition numbers of these algebras are completely determined by the decomposition matrices of related cyclotomic Hecke algebras of type G(s, 1, m), where 1 <= s <= r and 1 <= m <= n. Furthermore, the proof gives an explicit algorithm for computing these decomposition numbers. Consequently, in principle, the decomposition matrices of these algebras are now known in characteristic zero. In proving these results, we develop a Specht module theory for these algebras, explicitly construct their simple modules and introduce and study analogues of the cyclotomic Schur algebras of type G(r, p, n) when the parameters are (epsilon, q)-separated. The main results of the paper rest upon two Morita equivalences: the first reduces the calculation of all decomposition numbers to the case of the l-splittable decomposition numbers and the second Morita equivalence allows us to compute these decomposition numbers using an analogue of the cyclotomic Schur algebras for the Hecke algebras of type G(r, p, n).
引用
收藏
页码:865 / 926
页数:62
相关论文
共 29 条
[1]   ON THE SEMI-SIMPLICITY OF THE HECKE ALGEBRA OF (Z/RZ)INTEGRAL-G(N) [J].
ARIKI, S .
JOURNAL OF ALGEBRA, 1994, 169 (01) :216-225
[2]   On the decomposition numbers of the Hecke algebra of G(m,1,n) [J].
Ariki, S .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (04) :789-808
[3]   A HECKE ALGEBRA OF (Z/RZ)/S(N) AND CONSTRUCTION OF ITS IRREDUCIBLE REPRESENTATIONS [J].
ARIKI, S ;
KOIKE, K .
ADVANCES IN MATHEMATICS, 1994, 106 (02) :216-243
[4]   REPRESENTATION-THEORY OF A HECKE ALGEBRA OF G(R, P, N) [J].
ARIKI, S .
JOURNAL OF ALGEBRA, 1995, 177 (01) :164-185
[5]  
Benson D.J., 1991, Cambridge Studies in Advanced Mathematics, V30
[6]  
BROUE M, 1993, ASTERISQUE, P119
[7]  
Broue M, 1998, J REINE ANGEW MATH, V500, P127
[8]  
CHLOUVERAKI M., 2011, ARXIV110559
[9]  
Curtis C., 1987, Methods of representation theory, VII
[10]  
CURTIS C. W., 1987, METHODS REPRESENTATI