A Wide & Deep Learning Approach for Covid-19 Tweet Classification

被引:0
作者
Valdes-Chavez, Alberto [1 ]
Roberto Lopez-Santillan, J. [1 ]
Carlos Gonzalez-Gurrola, L. [1 ]
Ramirez-Alonso, Graciela [1 ]
Montes-y-Gomez, Manuel [2 ]
机构
[1] Univ Autonoma Chihuahua, Fac Ingn, Circuito Univ Campus 2, Chihuahua 31125, Chihuahua, Mexico
[2] Inst Nacl Astrofis Opt & Elect INAOE, Coordinac Ciencias Computac, Luis Enrique Erro 1, Puebla 72840, Mexico
来源
PATTERN RECOGNITION, MCPR 2022 | 2022年 / 13264卷
关键词
Social media; Data mining; Natural language processing; Text classification; Wide & Deep; Covid-19;
D O I
10.1007/978-3-031-07750-0_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Public health surveillance via social media can be a useful tool to identify and track potential cases of a disease. The aim of this research was to design a method for identifying tweets describing potential Covid-19 cases. The proposed method uses a Wide & Deep (W&D) architecture, which combines two learning branches fed from different features to improve classification effectiveness. The deep branch uses a BERT-type model, while the wide branch considers two different lexical-based features. It was evaluated on the data from Task 5 of the Social Media Mining For Health (#SMM4H) 2021 competition. Results show that the proposed W&D method performed better than the wide-only and deep-only models, achieving an F1-score of 0.79 which matches the results of the 1st place ensemble-model.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 50 条
[31]   Deep learning-based approach for COVID-19 spread prediction [J].
Cumbane, Silvino Pedro ;
Gidofalvi, Gyozo .
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
[32]   Epidemiological forecasting of COVID-19 infection using deep learning approach [J].
Blagojevic, Andela ;
Sustersic, Tijana ;
Filipovic, Nenad .
2021 IEEE 21ST INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (IEEE BIBE 2021), 2021,
[33]   Deep Learning Approach for COVID-19 Detection in Computed Tomography Images [J].
Al Rahhal, Mohamad Mahmoud ;
Bazi, Yakoub ;
Jomaa, Rami M. ;
Zuair, Mansour ;
Al Ajlan, Naif .
CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (02) :2093-2110
[34]   Covid-19 detection: a Deep Learning Approach based on Wavelet Transform [J].
Chammakhi Msadaa, Ikbal ;
Grayaa, Khaled .
ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2022, 32 (01) :87-98
[35]   COVID-19: a new deep learning computer-aided model for classification [J].
Elzeki, Omar M. ;
Shams, Mahmoud ;
Sarhan, Shahenda ;
Abd Elfattah, Mohamed ;
Hassanien, Aboul Ella .
PEERJ COMPUTER SCIENCE, 2021,
[36]   Challenges, opportunities, and advances related to COVID-19 classification based on deep learning [J].
Agnihotri A. ;
Kohli N. .
Data Science and Management, 2023, 6 (02) :98-109
[37]   A deep transfer learning based approach to detect COVID-19 waste [J].
Buragohain, Ayushman ;
Mali, Bhabesh ;
Saha, Santanu ;
Singh, Pranav Kumar .
INTERNET TECHNOLOGY LETTERS, 2022, 5 (03)
[38]   COVID-19 Hierarchical Classification Using a Deep Learning Multi-Modal [J].
Althenayan, Albatoul S. ;
Alsalamah, Shada A. ;
Aly, Sherin ;
Nouh, Thamer ;
Mahboub, Bassam ;
Salameh, Laila ;
Alkubeyyer, Metab ;
Mirza, Abdulrahman .
SENSORS, 2024, 24 (08)
[39]   A Deep Learning Based Hybrid Approach for COVID-19 Disease Detections [J].
Yildirim, Muhammed ;
Cinar, Ahmet .
TRAITEMENT DU SIGNAL, 2020, 37 (03) :461-468
[40]   Deep transfer learning CNN based approach for COVID-19 detection [J].
Muhammad, Wazir ;
Bhutto, Zuhaibuddin ;
Shah, Syed Ali Raza ;
Shah, Jalal ;
Shaikh, Murtaza Hussain ;
Hussain, Ayaz ;
Thaheem, Imdadullah ;
Ali, Shamshad .
INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2022, 9 (04) :44-52