Model-Based Stochastic Fault Detection and Diagnosis of Lithium-Ion Batteries

被引:26
|
作者
Son, Jeongeun [1 ]
Du, Yuncheng [1 ]
机构
[1] Clarkson Univ, Dept Chem & Biomol Engn, Potsdam, NY 13676 USA
基金
美国国家科学基金会;
关键词
fault detection and classification; uncertainty analysis; lithium-ion battery; optimization; thermal management; polynomial chaos expansion; DESIGN; CLASSIFICATION; ALGORITHMS;
D O I
10.3390/pr7010038
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The Lithium-ion battery (Li-ion) has become the dominant energy storage solution in many applications, such as hybrid electric and electric vehicles, due to its higher energy density and longer life cycle. For these applications, the battery should perform reliably and pose no safety threats. However, the performance of Li-ion batteries can be affected by abnormal thermal behaviors, defined as faults. It is essential to develop a reliable thermal management system to accurately predict and monitor thermal behavior of a Li-ion battery. Using the first-principle models of batteries, this work presents a stochastic fault detection and diagnosis (FDD) algorithm to identify two particular faults in Li-ion battery cells, using easily measured quantities such as temperatures. In addition, models used for FDD are typically derived from the underlying physical phenomena. To make a model tractable and useful, it is common to make simplifications during the development of the model, which may consequently introduce a mismatch between models and battery cells. Further, FDD algorithms can be affected by uncertainty, which may originate from either intrinsic time varying phenomena or model calibration with noisy data. A two-step FDD algorithm is developed in this work to correct a model of Li-ion battery cells and to identify faulty operations in a normal operating condition. An iterative optimization problem is proposed to correct the model by incorporating the errors between the measured quantities and model predictions, which is followed by an optimization-based FDD to provide a probabilistic description of the occurrence of possible faults, while taking the uncertainty into account. The two-step stochastic FDD algorithm is shown to be efficient in terms of the fault detection rate for both individual and simultaneous faults in Li-ion batteries, as compared to Monte Carlo (MC) simulations.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Model-based sensor fault detection for lithium-ion batteries in electric vehicles
    Yu, Quanqing
    Xiong, Rui
    Lin, Cheng
    2019 IEEE 89TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-SPRING), 2019,
  • [2] Recent advances in model-based fault diagnosis for lithium-ion batteries: A comprehensive review
    Xu, Yiming
    Ge, Xiaohua
    Guo, Ruohan
    Shen, Weixiang
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 207
  • [3] Model-based real-time thermal fault diagnosis of Lithium-ion batteries
    Dey, Satadru
    Biron, Zoleikha Abdollahi
    Tatipamula, Sagar
    Das, Nabarun
    Mohon, Sara
    Ayalew, Beshah
    Pisu, Pierluigi
    CONTROL ENGINEERING PRACTICE, 2016, 56 : 37 - 48
  • [4] A Combined Model-Based and Data-Driven Fault Diagnosis Scheme for Lithium-Ion Batteries
    Jin, Hailang
    Gao, Zhiwei
    Zuo, Zhiqiang
    Zhang, Zhicheng
    Wang, Yijing
    Zhang, Aihua
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (06) : 6274 - 6284
  • [5] A novel model-based damage detection method for lithium-ion batteries
    Yang, Zichuan
    Li, Junqiu
    Jiang, Haifu
    Liu, Ziming
    JOURNAL OF ENERGY STORAGE, 2021, 42
  • [6] Bayesian hierarchical model-based prognostics for lithium-ion batteries
    Mishra, Madhav
    Martinsson, Jesper
    Rantatalo, Matti
    Goebel, Kai
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2018, 172 : 25 - 35
  • [7] Model-based On-board Monitoring for Lithium-Ion Batteries
    Remmlinger, Juergen
    Buchholz, Michael
    Dietmayer, Klaus
    AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (04) : 282 - 295
  • [8] Model-based Sensor Fault Diagnosis of a Lithium-ion Battery in Electric Vehicles
    Liu, Zhentong
    He, Hongwen
    ENERGIES, 2015, 8 (07): : 6509 - 6527
  • [9] Review of Abnormality Detection and Fault Diagnosis Methods for Lithium-Ion Batteries
    Xinhua Liu
    Mingyue Wang
    Rui Cao
    Meng Lyu
    Cheng Zhang
    Shen Li
    Bin Guo
    Lisheng Zhang
    Zhengjie Zhang
    Xinlei Gao
    Hanchao Cheng
    Bin Ma
    Shichun Yang
    Automotive Innovation, 2023, 6 : 256 - 267
  • [10] Review of Abnormality Detection and Fault Diagnosis Methods for Lithium-Ion Batteries
    Liu, Xinhua
    Wang, Mingyue
    Cao, Rui
    Lyu, Meng
    Zhang, Cheng
    Li, Shen
    Guo, Bin
    Zhang, Lisheng
    Zhang, Zhengjie
    Gao, Xinlei
    Cheng, Hanchao
    Ma, Bin
    Yang, Shichun
    AUTOMOTIVE INNOVATION, 2023, 6 (02) : 256 - 267