Existence of GCD's and Factorization in Rings of non-Archimedean Entire Functions

被引:0
作者
Cherry, William [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
来源
ADVANCES IN NON-ARCHIMEDEAN ANALYSIS | 2011年 / 551卷
关键词
non-Archimedean; entire functions; several variables; greatest common divisors; factorial; Weierstrass Preparation Theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A detailed proof is given of the well-known facts that greatest common divisors exist in rings of non-Archimedean entire functions of several variables and that these rings of entire functions are almost factorial, in the sense that an entire function can be uniquely written as a countable product of irreducible entire functions.
引用
收藏
页码:57 / 69
页数:13
相关论文
共 7 条
[1]  
[Anonymous], 1992, FUNCTION THEORY SEVE
[2]  
Bosch Siegfried, 1984, Non-Archimedean analysis, volume 261 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
[3]   Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem [J].
Cherry, W ;
Ye, ZA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (12) :5043-5071
[4]  
Escassut A., 2003, ULTRAMETRIC BANACH A
[5]  
Lazard M., 1962, Inst. Hautes Etudes Sci. Publ. Math., V14, P47
[6]  
LUTKEBOHMERT W, 1995, COMMUNICATION
[7]  
SALMON P, 1962, CR HEBD ACAD SCI, V255, P227