Electrochemical Properties and Applications of Nanocrystalline, Microcrystalline, and Epitaxial Cubic Silicon Carbide Films

被引:69
|
作者
Zhuang, Hao [1 ]
Yang, Nianjun [1 ]
Zhang, Lei [1 ]
Fuchs, Regina [1 ]
Jiang, Xin [1 ]
机构
[1] Univ Siegen, Inst Mat Engn, D-57076 Siegen, Germany
关键词
silicon carbide; thin film; electrochemistry; structural design; super capacitor; sensor; DOUBLE-LAYER CAPACITANCE; ELECTRICAL DOUBLE-LAYER; DIFFERENTIAL CAPACITANCE; HETEROEPITAXIAL GROWTH; PLANAR DEFECTS; THIN-FILMS; CARBON; CONDUCTIVITY; ELECTRODES; NANOWIRES;
D O I
10.1021/acsami.5b02024
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Microstructures of the materials (e.g., crystallinitiy, defects, and composition, etc.) determine their properties, which eventually lead to their diverse applications. In this contribution, the properties, especially the electrochemical properties, of cubic silicon carbide (3C-SiC) films have been engineered by controlling their microstructures. By manipulating the deposition conditions, nanocrystalline, microcrystalline and epitaxial (001) 3C-SiC films are obtained with varied properties. The epitaxial 3C-SiC film presents the lowest double-layer capacitance and the highest reversibility of redox probes, because of its perfect (001) orientation and high phase purity. The highest double-layer capacitance and the lowest reversibility of redox probes have been realized on the nanocrystalline 3C-SiC film. Those are ascribed to its high amount of grain boundaries, amorphous phases and large diversity in its crystal size. Based on their diverse properties, the electrochemical performances of 3C-SiC films are evaluated in two kinds of potential applications, namely an electrochemical capacitor using a nanocrystalline film and an electrochemical dopamine sensor using the epitaxial 3C-SiC film. The nanocrystalline 3C-SiC film shows not only a high double layer capacitance (43-70 mu F/cm(2)) but also a long-term stability of its capacitance. The epitaxial 3C-SiC film shows a low detection limit toward dopamine, which is one to 2 orders of magnitude lower than its normal concentration in tissue. Therefore, 3C-SiC film is a novel but designable material for different emerging electrochemical applications such as energy storage, biomedical/chemical sensors, environmental pollutant detectors, and so on.
引用
收藏
页码:10886 / 10895
页数:10
相关论文
共 50 条
  • [1] Microstructure and infrared spectral properties of porous polycrystalline and nanocrystalline cubic silicon carbide
    Fan, J. Y.
    Li, H. X.
    Cui, W. N.
    APPLIED PHYSICS LETTERS, 2009, 95 (02)
  • [2] Applications of microcrystalline hydrogenated cubic silicon carbide for amorphous silicon thin film solar cells
    Ogawa, Shunsuke
    Okabe, Masaaki
    Ikeda, Ytiusuke
    Itoh, Takashi
    Yoshida, Norimitsu
    Nonomura, Shuichi
    THIN SOLID FILMS, 2008, 516 (05) : 740 - 742
  • [3] Structural changes in tungsten wire and their effect on the properties of hydrogenated nanocrystalline cubic silicon carbide thin films
    Tabata, Akimori
    Naito, Akinori
    THIN SOLID FILMS, 2011, 519 (14) : 4451 - 4454
  • [4] Electrochemistry of Nanocrystalline 3C Silicon Carbide Films
    Yang, Nianjun
    Zhuang, Hao
    Hoffmann, Rene
    Smirnov, Waldemar
    Hees, Jakob
    Jiang, Xin
    Nebel, Christoph E.
    CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (21) : 6514 - 6519
  • [5] Properties of hydrogenated microcrystalline cubic silicon carbide films deposited by hot wire chemical vapor deposition at a low substrate temperature
    Miyajima, S
    Yamada, A
    Konagai, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2004, 43 (9A-B): : L1190 - L1192
  • [6] Aluminum-doped hydrogenated microcrystalline cubic silicon carbide films deposited by hot wire CVD
    Miyajima, S
    Yamada, A
    Konagai, M
    THIN SOLID FILMS, 2006, 501 (1-2) : 186 - 189
  • [7] Microstructure and electronic properties of microcrystalline silicon carbide thin films prepared by hot-wire CVD
    Chen, T.
    Koehler, F.
    Heidt, A.
    Huang, Y.
    Finger, F.
    Carius, R.
    THIN SOLID FILMS, 2011, 519 (14) : 4511 - 4515
  • [8] Nanocrystalline silicon carbide films for solar cells
    Vlaskina, S., I
    Mishinova, G. N.
    Vlaskin, V., I
    Rodionov, V. E.
    Svechnikov, G. S.
    SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2016, 19 (03) : 273 - 278
  • [9] Optical properties of cubic silicon carbide
    Laine, AD
    Mezzasalma, AM
    Mondio, G
    Parisi, P
    Cubiotti, G
    Kucherenko, YN
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1998, 93 (1-3) : 251 - 257
  • [10] Epitaxial growth and characterization of silicon carbide films
    Dhanaraj, G
    Dudley, M
    Chen, Y
    Ragothamachar, B
    Wu, B
    Zhang, H
    JOURNAL OF CRYSTAL GROWTH, 2006, 287 (02) : 344 - 348