Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century

被引:146
|
作者
Wang, Zhaoli [1 ,2 ]
Zhong, Ruida [1 ]
Lai, Chengguang [1 ,2 ]
Zeng, Zhaoyang [1 ]
Lian, Yanqing [3 ]
Bai, Xiaoyan [4 ]
机构
[1] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510641, Guangdong, Peoples R China
[2] South China Univ Technol, State Key Lab Subtrop Bldg Sci, Guangzhou 510641, Guangdong, Peoples R China
[3] Univ Illinois, Inst Nat Resources Sustainabil, 2204 Griffith Dr, Champaign, IL 61820 USA
[4] Guangdong Univ Technol, Sch Environm Sci & Engn, Dept Environm Engn, Guangzhou 510006, Guangdong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Future drought; Spatiotemporal variation; VIC; PDSI; General circulation models; Pearl River Basin; SPATIOTEMPORAL VARIATION; MULTIMODEL PROJECTION; FUTURE CLIMATE; LOESS PLATEAU; MODEL; CMIP5; WATER; PRECIPITATION; ENSEMBLE; PARAMETERIZATION;
D O I
10.1016/j.agrformet.2017.12.077
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Drought is expected to increase in frequency, severity, and duration in the future due to global warming and this will greatly threaten the future socio-economic development. This study evaluates the spatiotemporal variation of future drought (2016-2100) in the Pearl River Basin (PRB) using the Palmer drought severity index (PDSI), the Variable Infiltration Capacity (VIC) model, and future climate projections based on the general circulation models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) under three representative concentration pathway (RCP) scenarios. The results show that future drought conditions are expected to be more serious than historical (1960-2015) drought conditions in the PRB, especially under RCP8.5. The severity and variability of future drought conditions are also higher than for the historical period. The west Guangxi and South Guizhou provinces exhibit the highest increment in drought severity under the three RCP scenarios. At the seasonal scale, drought severity shows the highest increment in the winter with little change in summer; the summer drought severity increases in most areas of the PRB but the increment of the drought severity is lower than the winter. The number of future drought events is expected to decrease but the duration and severity are expected to increase, especially in the mid-west PRB and under high greenhouse gas (GHG) emission scenarios. In summary, in most areas of the PRB, the severity and variability of drought are expected to increase in the 21 st century, especially in the mid-west PRB and an increase in evapotranspiration is assumed to be the main underlying cause. Irrigation projects and agricultural production in the PRB might face serious threats of drought in the future.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 50 条
  • [1] Projections of 21st century climate of the Columbia River Basin
    Rupp, David E.
    Abatzoglou, John T.
    Mote, Philip W.
    CLIMATE DYNAMICS, 2017, 49 (5-6) : 1783 - 1799
  • [2] Climate change impact on the Nemunas River basin hydrology in the 21st century
    Stonevicius, Edvinas
    Rimkus, Egidijus
    Staras, Andrius
    Kazys, Justas
    Valiuskevicius, Gintaras
    BOREAL ENVIRONMENT RESEARCH, 2017, 22 : 49 - 65
  • [3] Expected trends of regional climate change for the Carpathian Basin for the 21st century
    Pieczka, Ildiko
    Pongracz, Rita
    Bartholy, Judit
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2011, 46 (1-2) : 6 - 17
  • [4] The Impact of Climate Change on Water Resources in the Upper Yellow River Basin in the 21st Century
    Bao Zhenxin
    Wang Guoqing
    Yan Xiaolin
    Song Xuan
    Zhang Aijing
    Shang Manting
    PROCEEDINGS OF THE 5TH INTERNATIONAL YELLOW RIVER FORUM ON ENSURING WATER RIGHT OF THE RIVER'S DEMAND AND HEALTHY RIVER BASIN MAINTENANCE, VOL II, 2015, : 151 - 157
  • [5] 21st Century alpine climate change
    Kotlarski, Sven
    Gobiet, Andreas
    Morin, Samuel
    Olefs, Marc
    Rajczak, Jan
    Samacoiets, Raphaelle
    CLIMATE DYNAMICS, 2023, 60 (1-2) : 65 - 86
  • [6] 21st Century alpine climate change
    Sven Kotlarski
    Andreas Gobiet
    Samuel Morin
    Marc Olefs
    Jan Rajczak
    Raphaëlle Samacoïts
    Climate Dynamics, 2023, 60 : 65 - 86
  • [7] Assessing future socioeconomic drought events under a changing climate over the Pearl River basin in South China
    Liu, Suning
    Shi, Haiyun
    Niu, Jun
    Chen, Ji
    Kuang, Xingxing
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2020, 30
  • [8] Climate change effect on groundwater resources in South East Europe during 21st century
    Nistor, Margarit-Mircea
    QUATERNARY INTERNATIONAL, 2019, 504 : 171 - 180
  • [9] Spatiotemporal Variation Characteristics of Droughts and Their Connection to Climate Variability and Human Activity in the Pearl River Basin, South China
    Cui, Lilu
    Chen, Xiusheng
    An, Jiachun
    Yao, Chaolong
    Su, Yong
    Zhu, Chengkang
    Li, Yu
    WATER, 2023, 15 (09)
  • [10] Human and climate impacts on the 21st century hydrological drought
    Wanders, N.
    Wada, Y.
    JOURNAL OF HYDROLOGY, 2015, 526 : 208 - 220