TDP-43 pathology: From noxious assembly to therapeutic removal

被引:52
作者
Keating, Sean S. [1 ]
San Gil, Rebecca [1 ]
Swanson, Molly E., V [2 ,3 ]
Scotter, Emma L. [2 ,3 ]
Walker, Adam K. [1 ]
机构
[1] Univ Queensland, Queensland Brain Inst, Neurodegenerat Pathobiol Lab, Brisbane, Qld 4072, Australia
[2] Univ Auckland, Sch Biol Sci, Auckland 1010, New Zealand
[3] Univ Auckland, Ctr Brain Res, Auckland 1010, New Zealand
基金
英国医学研究理事会;
关键词
TDP-43; proteinopathy; Protein degradation; Proteostasis; Neurodegeneration; Motor neuron disease; ALS; FTD; AMYOTROPHIC-LATERAL-SCLEROSIS; DNA-BINDING PROTEIN; FRONTOTEMPORAL LOBAR DEGENERATION; UBIQUITIN-PROTEASOME SYSTEM; LIQUID PHASE-SEPARATION; ALPHA-HELICAL STRUCTURE; RNA RECOGNITION MOTIF; MOTOR-NEURON DISEASE; NUCLEIC-ACID BINDING; HEAT-SHOCK FACTOR-1;
D O I
10.1016/j.pneurobio.2022.102229
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Our understanding of amyotrophic lateral sclerosis and frontotemporal dementia has advanced dramatically since the discovery of cytoplasmic TAR DNA-binding protein 43 (TDP-43) inclusions as the hallmark pathology of these neurodegenerative diseases. Recent studies have provided insights into the physiological function of TDP43 as an essential DNA-/RNA-modulating protein, and the triggers and consequences of TDP-43 dysfunction and aggregation. The formation of TDP-43 pathology is a progressive process, involving the generation of multiple distinct protein species, each with varying biophysical properties and roles in neurodegeneration. Here, we explore how the pathogenic changes to TDP-43, including mislocalisation, misfolding, aberrant liquid-liquid phase separation, stress granule assembly, oligomerisation, and post-translational modification, drive disease-associated aggregation in TDP-43 proteinopathies. We highlight how pathological TDP-43 species are formed and contribute to cellular dysfunction and toxicity, via both loss-of-function and gain-of-function mechanisms. We also review the role of protein homeostasis mechanisms, namely the ubiquitin proteasome system, autophagylysosome pathway, heat-shock response, and chaperone-mediated autophagy, in combating TDP-43 aggregation and discuss how their dysfunction likely promotes disease pathogenesis and progression. Finally, we evaluate preclinical studies aimed at enhancing TDP-43 protein clearance via these mechanisms and provide insight on promising strategies for future therapeutic advances. Harnessing the mechanisms that protect against or ameliorate TDP-43 pathology presents promising opportunities for developing disease-modifying treatments for these neurodegenerative diseases.
引用
收藏
页数:30
相关论文
共 382 条
[1]   Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation [J].
Afroz, Tariq ;
Hock, Eva-Maria ;
Ernst, Patrick ;
Foglieni, Chiara ;
Jambeau, Melanie ;
Gilhespy, Larissa A. B. ;
Laferriere, Florent ;
Maniecka, Zuzanna ;
Pluckthun, Andreas ;
Mittl, Peer ;
Paganetti, Paolo ;
Allain, Frederic H. T. ;
Polymenidou, Magdalini .
NATURE COMMUNICATIONS, 2017, 8
[2]   Targeting protein homeostasis in sporadic inclusion body myositis [J].
Ahmed, Mhoriam ;
Machado, Pedro M. ;
Miller, Adrian ;
Spicer, Charlotte ;
Herbelin, Laura ;
He, Jianghua ;
Noel, Janelle ;
Wang, Yunxia ;
Mcvey, April L. ;
Pasnoor, Mamatha ;
Gallagher, Philip ;
Statland, Jeffrey ;
Lu, Ching-Hua ;
Kalmar, Bernadett ;
Brady, Stefen ;
Sethi, Huma ;
Samandouras, George ;
Parton, Matt ;
Holton, Janice L. ;
Weston, Anne ;
Collinson, Lucy ;
Taylor, J. Paul ;
Schiavo, Giampietro ;
Hanna, Michael G. ;
Barohn, Richard J. ;
Dimachkie, Mazen M. ;
Greensmith, Linda .
SCIENCE TRANSLATIONAL MEDICINE, 2016, 8 (331)
[3]  
Aikio M., 2021, OPPOSING ROLES P38A
[4]  
Aizawa H, 2019, J CLIN NEUROL, V15, P62
[5]   Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations [J].
Alami, Nael H. ;
Smith, Rebecca B. ;
Carrasco, Monica A. ;
Williams, Luis A. ;
Winborn, Christina S. ;
Han, Steve S. W. ;
Kiskinis, Evangelos ;
Winborn, Brett ;
Freibaum, Brian D. ;
Kanagaraj, Anderson ;
Clare, Alison J. ;
Badders, Nisha M. ;
Bilican, Bilada ;
Chaum, Edward ;
Chandran, Siddharthan ;
Shaw, Christopher E. ;
Eggan, Kevin C. ;
Maniatis, Tom ;
Taylor, J. Paul .
NEURON, 2014, 81 (03) :536-543
[6]  
Aman Y, 2021, NATURE AGING, V1, P634
[7]   Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin [J].
Amlie-Wolf, Alexandre ;
Ryvkin, Paul ;
Tong, Rui ;
Dragomir, Isabelle ;
Suh, EunRan ;
Xu, Yan ;
Van Deerlin, Vivianna M. ;
Gregory, Brian D. ;
Kwong, Linda K. ;
Trojanowski, John Q. ;
Lee, Virginia M. -Y. ;
Wang, Li-San ;
Lee, Edward B. .
PLOS ONE, 2015, 10 (10)
[8]   TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis [J].
Arai, Tetsuaki ;
Hasegawa, Masato ;
Akiyama, Haruhiko ;
Ikeda, Kenji ;
Nonaka, Takashi ;
Mori, Hiroshi ;
Mann, David ;
Tsuchiya, Kuniaki ;
Yoshida, Marl ;
Hashizume, Yoshio ;
Oda, Tatsuro .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 351 (03) :602-611
[9]   Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration [J].
Arbely, Eyal ;
Natan, Eviatar ;
Brandt, Tobias ;
Allen, Mark D. ;
Veprintsev, Dmitry B. ;
Robinson, Carol V. ;
Chin, Jason W. ;
Joerger, Andreas C. ;
Fersht, Alan R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (20) :8251-8256
[10]   TDP43 nuclear export and neurodegeneration in models of amyotrophic lateral sclerosis and frontotemporal dementia [J].
Archbold, Hilary C. ;
Jackson, Kasey L. ;
Arora, Ayush ;
Weskamp, Kaitlin ;
Tank, Elizabeth M-H. ;
Li, Xingli ;
Miguez, Roberto ;
Dayton, Robert D. ;
Tamir, Sharon ;
Klein, Ronald L. ;
Barmada, Sami J. .
SCIENTIFIC REPORTS, 2018, 8