Commuting Solutions of a Quadratic Matrix Equation for Nilpotent Matrices

被引:11
作者
Dong, Qixiang [1 ]
Ding, Jiu [2 ]
Huang, Qianglian [3 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[2] Univ Southern Mississippi, Dept Math, Hattiesburg, MS 39406 USA
[3] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
quadratic matrix equation; nilpotent matrix; Jordan canonical form; Toeplitz matrix; commuting solution;
D O I
10.1142/S1005386718000032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the quadratic matrix equation AXA = XAX with a given nilpotent matrix A, to find all commuting solutions. We first provide a key lemma, and consider the special case that A has only one Jordan block to motivate the idea for the general case. Our main result gives the structure of all the commuting solutions of the equation with an arbitrary nilpotent matrix.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 1990, Matrix Perturbation Theory, Computer Science and Scientific Computing
[2]   PARTITION-FUNCTION OF 8-VERTEX LATTICE MODEL [J].
BAXTER, RJ .
ANNALS OF PHYSICS, 1972, 70 (01) :193-&
[3]  
Cullen C.G., 1990, MATRICES LINEAR TRAN, V2nd
[4]   Spectral solutions of the Yang-Baxter matrix equation [J].
Ding, J. ;
Rhee, N. H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) :567-573
[5]   Further Solutions of a Yang-Baxter-like Matrix Equation [J].
Ding, Jiu ;
Zhang, Chenhua ;
Rhee, Noah H. .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2013, 3 (04) :352-362
[6]   Complete commuting solutions of the Yang-Baxter-like matrix equation for diagonalizable matrices [J].
Dong, Qixiang ;
Ding, Jiu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (01) :194-201
[7]  
Felix F., 2009, Nonlinear Equations, Quantum Groups and Duality Theorems: A Primer on the Yang-Baxter Equation
[8]   All solutions of the Yang-Baxter-like matrix equation for rank-one matrices [J].
Tian, Haiyan .
APPLIED MATHEMATICS LETTERS, 2016, 51 :55-59
[9]  
Yang C.N., 1989, Braid Group, Knot Theory and Statistical Mechanics