Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1.8 (SNS) and Nav1.9 (SNS2) in primary sensory neurons

被引:113
|
作者
Benn, SC
Costigan, M
Tate, S
Fitzgerald, M
Woolf, CJ
机构
[1] Massachusetts Gen Hosp, Dept Anesthesia & Crit Care, Neural Plast Res Grp, Charlestown, MA 02129 USA
[2] Harvard Univ, Sch Med, Charlestown, MA 02129 USA
[3] UCL, Dept Anat & Dev Biol, London WC1E 6BT, England
[4] Glaxo Wellcome Res & Dev Ltd, Stevenage SG1 2NY, Herts, England
来源
JOURNAL OF NEUROSCIENCE | 2001年 / 21卷 / 16期
关键词
sodium channels; TTXr; dorsal root ganglia (DRG); development; sensory neurons; growth factors;
D O I
10.1523/JNEUROSCI.21-16-06077.2001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The development of neuronal excitability involves the coordinated expression of different voltage-gated ion channels. We have characterized the expression of two sensory neuron-specific tetrodotoxin-resistant sodium channel alpha subunits, Na(v)1. (SNS/PN3) and Na(v)1.9 (SNS2/NaN), in developing rat lumbar dorsal root ganglia (DRGs). Expression of both Na(v)1.8 and Na(v)1.9 increases with age, beginning at embryonic day (E) 15 and E17, respectively, and reaching adult levels by postnatal day 7. Their distribution is restricted mainly to those subpopulations of primary sensory neurons in developing and adult DRGs that give rise to unmyelinated C-fibers (neurofilament 200 negative). Na(v)1.8 is expressed in a higher proportion of neuronal profiles than Na(v)1.9 at all stages during development, as in the adult. At E17, almost all Na(v)1.8-expressing neurons also express the high-affinity NGF receptor TrkA, and only a small proportion bind to IB4, a marker for c-ret-expressing (glial-derived neurotrophic factor-responsive) neurons. Because IB4 binding neurons differentiate from TrkA neurons in the postnatal period, the proportion of Na(v)1.8 cells that bind to IB4 increases, in parallel with a decrease in the proportion of Na(v)1.8-TrkA co-expressing cells. In contrast, an equal number of Na(v)1.9 cells bind IB4 and TrkA in embryonic life. The differential expression of Na(v)1.8 and Na(v)1.9 in late embryonic development, with their distinctive kinetic properties, may contribute to the development of spontaneous and stimulus-evoked excitability in small diameter primary sensory neurons in the perinatal period and the activity-dependent changes in differentiation they produce.
引用
收藏
页码:6077 / 6085
页数:9
相关论文
共 49 条
  • [1] Heat-resistant action potentials require TTX-resistant sodium channels NaV1.8 and NaV1.9
    Touska, Filip
    Turnquist, Brian
    Vlachova, Viktorie
    Reeh, Peter W.
    Leffler, Andreas
    Zimmermann, Katharina
    JOURNAL OF GENERAL PHYSIOLOGY, 2018, 150 (08): : 1125 - 1144
  • [2] Tetrodotoxin-resistant voltage-gated sodium channels Nav1.8 and Nav1.9 are expressed in the retina
    O'Brien, Brendan J.
    Caldwell, John H.
    Ehring, George R.
    O'Brien, Keely M. Bumsted
    Luo, Songjiang
    Levinson, S. Rock
    JOURNAL OF COMPARATIVE NEUROLOGY, 2008, 508 (06) : 940 - 951
  • [3] The pattern of expression of the voltage-gated sodium channels Nav1.8 and Nav1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models
    Decosterd, I
    Ji, RR
    Abdi, S
    Tate, S
    Woolf, CJ
    PAIN, 2002, 96 (03) : 269 - 277
  • [4] Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2
    Amaya, F
    Decosterd, I
    Samad, TA
    Plumpton, C
    Tate, S
    Mannion, RJ
    Costigan, M
    Woolf, CJ
    MOLECULAR AND CELLULAR NEUROSCIENCE, 2000, 15 (04) : 331 - 342
  • [5] Targeting Voltage Gated Sodium Channels NaV1.7, NaV1.8, and NaV1.9 for Treatment of Pathological Cough
    Yukiko Muroi
    Bradley J. Undem
    Lung, 2014, 192 : 15 - 20
  • [6] Targeting Voltage Gated Sodium Channels NaV1.7, NaV1.8, and NaV1.9 for Treatment of Pathological Cough
    Muroi, Yukiko
    Undem, Bradley J.
    LUNG, 2014, 192 (01) : 15 - 20
  • [7] Increased Nerve Fiber Expression of Sensory Sodium Channels Nav1.7, Nav1.8, and Nav1.9 in Rhinitis
    Keh, Siew M.
    Facer, Paul
    Simpson, Karen D.
    Sandhu, Guri
    Saleh, Hesham A.
    Anand, Praveen
    LARYNGOSCOPE, 2008, 118 (04): : 573 - 579
  • [8] The TTX-resistant sodium channel Nav1.8(SNS/PN3):: expression and correlation with membrane properties in rat nociceptive primary afferent neurons
    Djouhri, L
    Fang, X
    Okuse, K
    Wood, JN
    Berry, CM
    Lawson, SN
    JOURNAL OF PHYSIOLOGY-LONDON, 2003, 550 (03): : 739 - 752
  • [9] Changes in the expression of voltage-gated sodium channels Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in rat trigeminal ganglia following chronic constriction injury
    Xu, Wenhua
    Zhang, Jun
    Wang, Yuanyin
    Wang, Liecheng
    Wang, Xuxia
    NEUROREPORT, 2016, 27 (12) : 929 - 934
  • [10] Differential expression of tetrodotoxin-resistant sodium channels NaV1.8 and NaV1.9 in normal and inflamed rats
    Coggeshall, RE
    Tate, S
    Carlton, SM
    NEUROSCIENCE LETTERS, 2004, 355 (1-2) : 45 - 48