ANDRE-OORT CONJECTURE AND NONVANISHING OF CENTRAL L-VALUES OVER HILBERT CLASS FIELDS

被引:6
作者
Burungale, Ashay A. [1 ]
Hida, Haruzo [2 ]
机构
[1] Univ Arizona, Dept Math, 617 N Santa Rita Ave,POB 210089, Tucson, AZ 85721 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
ARITHMETIC VECTOR-BUNDLES; EQUIDISTRIBUTION PROBLEMS; AUTOMORPHIC-FORMS; CHARACTERS; POINTS;
D O I
10.1017/fms.2015.30
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F/Q be a totally real field and K/F a complex multiplication (CM) quadratic extension. Let I he a cuspidal Hilbert modular new form over F. Let lambda he a Ilecke character over K such that the Rankin Selherg convolution f with the theta-series associated with lambda is self-dual with root number 1. We consider the nonvanishing of the family of central-critical Rankin Selberg L-values L(1/2, f circle times lambda(chi)), as chi varies over the class group characters of K. Our approach is geometric, relying on the Zariski density of CM points in self-products of a Hilbert modular Shimura variety. We show that the number of class group characters chi such that L(1/2, f circle times lambda(chi)) not equal 0 increases with the absolute value of the discriminant of K. We crucially rely on the Andre-Oort conjecture for arbitrary self-product of the Hilbert modular Shimura variety. In view of the recent results of Tsitnertnan, Yuan Zhang and Andreatta-Goren-Howard-Pera, the results are now unconditional. We also consider a quaternionic version. Our approach is geometric, relying on the general theory of Shimura varieties and the geometric definition of nearly holomorphic modular forms. In particular, the approach avoids any use of a suhconvex hound for the Rankin Selberg L-values. The Waklspurger formula plays an underlying role.
引用
收藏
页数:26
相关论文
共 38 条
[1]  
Andreatta F., PREPRINT
[2]  
Bloch S., 1990, Progr. Math., VI, P333
[3]   ON THE ZETA-FUNCTIONS OF ALGEBRAIC NUMBER FIELDS [J].
BRAUER, R .
AMERICAN JOURNAL OF MATHEMATICS, 1947, 69 (02) :243-250
[4]   ON THE μ-INVARIANT OF THE CYCLOTOMIC DERIVATIVE OF A KATZ p-ADIC L-FUNCTION [J].
Burungale, Ashay A. .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2015, 14 (01) :131-148
[5]  
CASTELLA F, 2014, ARXIV14106591
[6]  
Chai C.-L., 2006, INT C MATH MADR EUR, V2, P295
[7]   Abelian varieties isogenous to a Jacobian [J].
Chai, Ching-Li ;
Oort, Frans .
ANNALS OF MATHEMATICS, 2012, 176 (01) :589-635
[8]   Equidistribution de mesures algelbriques [J].
Clozel, L ;
Ullmo, E .
COMPOSITIO MATHEMATICA, 2005, 141 (05) :1255-1309
[9]   Hyperbolic equidistribution problems on Siegel 3-folds and Hilbert modular varieties [J].
Cohen, PB .
DUKE MATHEMATICAL JOURNAL, 2005, 129 (01) :87-127
[10]   Non-triviality of Heegner points [J].
Cornut, C .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (12) :1039-1042