Stable limit theory for the Gaussian QMLE in a non-stationary asymmetric GARCH model

被引:0
|
作者
Arvanitis, Stelios [1 ]
机构
[1] AUEB, Dept Econ, Patis Str 76,POB 10434, Athens, Greece
关键词
Domain of attraction; Non-stationarity; Gaussian QMLE; Asymmetric GARCH; Inconsistency; Robustness; INFERENCE;
D O I
10.1016/j.spl.2018.09.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive the limit theory of the Gaussian QMLE in a non-stationary Asymmetric GARCH(1,1) model when the squared innovation process lies in the domain of attraction of a stable law. When the stability parameter lies in (1, 2], we find regularly varying rates and stable limits for the QMLE of the asymmetry and GARCH parameters. When it is less than one we derive total inconsistency. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:166 / 172
页数:7
相关论文
共 50 条
  • [1] Stable limits for the Gaussian QMLE in the non-stationary GARCH(1,1) model
    Arvanitis, Stelios
    Louka, Alexandros
    ECONOMICS LETTERS, 2017, 161 : 135 - 137
  • [2] A Note on the QMLE Limit Theory in the Non-stationary ARCH(1) Model
    Arvanitis, Stelios
    Louka, Alexandros
    JOURNAL OF TIME SERIES ECONOMETRICS, 2016, 8 (01) : 21 - 39
  • [3] A non-stationary factor copula model for non-Gaussian spatial data
    Mondal, Sagnik
    Krupskii, Pavel
    Genton, Marc G.
    STAT, 2024, 13 (03):
  • [4] Modelling non-stationary variance in EEG time series by state space GARCH model
    Wong, Kin Foon Kevin
    Galka, Andreas
    Yamashita, Okito
    Ozaki, Tohru
    COMPUTERS IN BIOLOGY AND MEDICINE, 2006, 36 (12) : 1327 - 1335
  • [5] Restricted normal mixture QMLE for non-stationary TGARCH(1,1) models
    Wang Hui
    Pan JiaZhu
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1341 - 1360
  • [6] Bargaining with asymmetric information in non-stationary markets
    Daniel Trefler
    Economic Theory, 1999, 13 : 577 - 601
  • [7] Bargaining with asymmetric information in non-stationary markets
    Trefler, D
    ECONOMIC THEORY, 1999, 13 (03) : 577 - 601
  • [8] A non-stationary Cox model
    Pons, O
    Visser, M
    SCANDINAVIAN JOURNAL OF STATISTICS, 2000, 27 (04) : 619 - 639
  • [9] GAUSSIAN APPROXIMATIONS FOR NON-STATIONARY MULTIPLE TIME SERIES
    Wu, Wei Biao
    Zhou, Zhou
    STATISTICA SINICA, 2011, 21 (03) : 1397 - 1413
  • [10] Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo
    Heinonen, Markus
    Mannerstrom, Henrik
    Rousu, Juho
    Kaski, Samuel
    Lahdesmaki, Harri
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 732 - 740