Enhancing gas permeation and separation performance of polymeric membrane by incorporating hollow polyamide nanoparticles with dense shell

被引:22
作者
Ding, Xiaoli [1 ,2 ,3 ]
Tan, Fangfang [1 ,2 ,3 ]
Zhao, Hongyong [1 ,2 ,4 ]
Hua, Mingming [1 ,2 ,3 ]
Wang, Mingxia [1 ,2 ,3 ]
Xin, Qingping [1 ,2 ,3 ]
Zhang, Yuzhong [1 ,2 ,3 ]
机构
[1] Tianjin Polytech Univ, Natl Ctr Int Joint Res Separat Membranes, State Key Lab Separat Membranes & Membrane Proc, 399 Binshuixidao, Tianjin 300387, Peoples R China
[2] Tianjin Polytech Univ, Tianjin Key Lab Hollow Fiber Membrane Mat & Proc, 399 Binshuixidao, Tianjin 300387, Peoples R China
[3] Tianjin Polytech Univ, Sch Mat Sci & Engn, 399 Binshuixidao, Tianjin 300387, Peoples R China
[4] Tianjin Polytech Univ, Sch Environm & Chem Engn, 399 Binshuixidao, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Hollow nanoparticle; Polymeric nanoparticle; Mixed matrix membrane; Gas separation; MIXED-MATRIX MEMBRANES; HALLOYSITE NANOTUBES; INORGANIC FILLERS; PERMEABILITY;
D O I
10.1016/j.memsci.2018.10.033
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Many inorganic nanofillers including porous nanoparticles and nonporous nanoparticles, are incorporated into the polymer matrices to exceed the trade-off relationship between the gas permeability and the permselectivity of the polymeric membrane materials. However, the organic-inorganic combination often suffers from the undesirable interface between the organic matrices and the inorganic fillers. In this study, we fabricated the hollow polyamide nanoparticles with dense shell via the interfacial polymerization in the surfactant-free microemulsion. And then the hollow nanoparticles combined with liquid acrylate monomers to form the mixed matrix membranes (MMMs) via the UV-induced photo-polymerization. The nanoparticles with an average diameter of 42 nm dispersed uniformly in the membranes. The resulting membranes showed no obvious defect. Compared with those of the pure polymer membrane, the CO(2 )permeability and CO2/N-2 permselectivity of the MMMs both increased as the nanofiller loading increased. And the gas permeation and separation performance exceeded the Robeson upper bound line with a maximum CO2 permeability of 1898 Barrer and a maximum CO2/N-2 permselectivity of 43.9 at 1 wt% nanofiller loading. The improvement mainly arose from the increase in the CO2 solubility, the N-2 diffusivity and the CO2/N-2 solubility selectivity. This combination of the hollow polymer nanoparticle with the dense shell and the polymeric membrane is also promising for fabricating ultra-thin and defect-free membranes for gas separation.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 40 条
  • [1] Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives
    Ahmad, Mohd Zamidi
    Navarro, Marta
    Lhotka, Miloslav
    Zornoza, Beatriz
    Tellez, Carlos
    de Vos, Wiebe M.
    Benes, Nieck E.
    Konnertz, Nora M.
    Visser, Tymen
    Semino, Rocio
    Maurin, Guillaume
    Fila, Vlastimil
    Coronas, Joaquin
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2018, 558 : 64 - 77
  • [2] Polymeric Gas-Separation Membranes for Petroleum Refining
    Alqaheem, Yousef
    Alomair, Abdulaziz
    Vinoba, Mari
    Perez, Andres
    [J]. INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2017, 2017
  • [3] Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation
    Boroglu, Mehtap Safak
    Yumru, Ahenk Burcu
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 173 : 269 - 279
  • [4] Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube-Mixed Matrix Membranes
    Chehrazi, Ehsan
    Sharif, Alireza
    Omidkhah, Mohammadreza
    Karimi, Mohammad
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (42) : 37321 - 37331
  • [5] Permeability of polymer/clay nanocomposites: A review
    Choudalakis, G.
    Gotsis, A. D.
    [J]. EUROPEAN POLYMER JOURNAL, 2009, 45 (04) : 967 - 984
  • [6] Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation
    Chung, Tai-Shung
    Jiang, Lan Ying
    Li, Yi
    Kulprathipanja, Santi
    [J]. PROGRESS IN POLYMER SCIENCE, 2007, 32 (04) : 483 - 507
  • [7] Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation
    Cong, Hailin
    Zhang, Jianmin
    Radosz, Maciej
    Shen, Youqing
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2007, 294 (1-2) : 178 - 185
  • [8] Potential applications of membrane separation for subsea natural gas processing: A review
    Dalane, Kristin
    Dai, Zhongde
    Mogseth, Gro
    Hillestad, Magne
    Deng, Liyuan
    [J]. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2017, 39 : 101 - 117
  • [9] Mixed-Matrix Membranes
    Dechnik, Janina
    Gascon, Jorge
    Doonan, Christian J.
    Janiak, Christoph
    Sumby, Christopher J.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (32) : 9292 - 9310
  • [10] PHOTOPOLYMERIZATION OF MULTIFUNCTIONAL MONOMERS IN CONDENSED PHASE
    DECKER, C
    MOUSSA, K
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 1987, 34 (04) : 1603 - 1618