Asymptotic tracking of periodic trajectories for a particle in an elliptical billiards

被引:0
|
作者
Galeani, S. [1 ]
Menini, L. [1 ]
Potini, A. [1 ]
Tornambe, A. [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Informat Sistemi & Prod, I-00133 Rome, Italy
来源
2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13 | 2007年
关键词
elliptical billiards; trajectory tracking; LMI; nonsmooth impact;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An infinitely rigid unitary mass (particle) is considered, moving on a planar region delimited by a rigid elliptical barrier (elliptical billiards) under the action of proper control forces. A class of periodic trajectories, involving an infinite sequence of nonsmooth impacts between the mass and the barrier at fixed times, is found by using an LMIs based procedure and a tracking problem is stated and solved by means of a controller whose state is subject to jumps.
引用
收藏
页码:1882 / 1887
页数:6
相关论文
共 50 条
  • [1] Robust asymptotic tracking of periodic trajectories in elliptical billiards
    Galeani, S.
    Menini, L.
    Potini, A.
    Tornambe, A.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 919 - 924
  • [2] Trajectory tracking for a particle in elliptical billiards
    Galeani, S.
    Menini, L.
    Potini, A.
    Tornambe, A.
    INTERNATIONAL JOURNAL OF CONTROL, 2008, 81 (02) : 189 - 213
  • [3] Counting Periodic Trajectories of Finsler Billiards
    Blagojevi, Pavle V. M.
    Harrison, Michael
    Tabachnikov, Serge
    Ziegler, Guenter M.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [4] PERIODIC TRAJECTORIES IN RIGHT-TRIANGLE BILLIARDS
    CIPRA, B
    HANSON, RM
    KOLAN, A
    PHYSICAL REVIEW E, 1995, 52 (02): : 2066 - 2071
  • [5] PERIODIC TRAJECTORIES OF BIRKHOFF'S BILLIARDS.
    Treshchev, D.V.
    Moscow University mechanics bulletin, 1987, 42 (05) : 35 - 39
  • [6] Correlations for pairs of periodic trajectories for open billiards
    Petkov, Vesselin
    Stoyanov, Luchezar
    NONLINEARITY, 2009, 22 (11) : 2657 - 2679
  • [7] Classification of symmetric periodic trajectories in ellipsoidal billiards
    Casas, Pablo S.
    Ramirez-Ros, Rafael
    CHAOS, 2012, 22 (02)
  • [8] VARIATIONAL PRINCIPLE FOR PERIODIC TRAJECTORIES OF HYPERBOLIC BILLIARDS
    BUNIMOVICH, LA
    CHAOS, 1995, 5 (02) : 349 - 355
  • [9] PERIODIC TRAJECTORIES IN 3-DIMENSIONAL BIRKHOFF BILLIARDS
    BABENKO, IK
    MATHEMATICS OF THE USSR-SBORNIK, 1992, 71 (01): : 1 - 13
  • [10] Periodic trajectories in 3-dimensional convex billiards
    Farber, M
    Tabachnikov, S
    MANUSCRIPTA MATHEMATICA, 2002, 108 (04) : 431 - 437