A Smoothed Backbone-Dependent Rotamer Library for Proteins Derived from Adaptive Kernel Density Estimates and Regressions

被引:745
作者
Shapovalov, Maxim V. [1 ]
Dunbrack, Roland L., Jr. [1 ]
机构
[1] Fox Chase Canc Ctr, Inst Canc Res, Philadelphia, PA 19111 USA
关键词
SIDE-CHAIN CONFORMATIONS; STRUCTURE PREDICTION; ELECTRON-DENSITY; DESIGN; MODEL; OPTIMIZATION; ASPARAGINE; REFINEMENT; MOLPROBITY; ALGORITHM;
D O I
10.1016/j.str.2011.03.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rotamer libraries are used in protein structure determination, prediction, and design. The backbone-dependent rotamer library consists of rotamer frequencies, mean dihedral angles, and variances as a function of the backbone dihedral angles. Structure prediction and design methods that employ backbone flexibility would strongly benefit from smoothly varying probabilities and angles. A new version of the backbone-dependent rotamer library has been developed using adaptive kernel density estimates for the rotamer frequencies and adaptive kernel regression for the mean dihedral angles and variances. This formulation allows for evaluation of the rotamer probabilities, mean angles, and variances as a continuous function of phi and psi. Continuous probability density estimates for the nonrotameric degrees of freedom of amides, carboxylates, and aromatic side chains have been modeled as a function of the backbone dihedrals and rotamers of the remaining degrees of freedom. New backbone-dependent rotamer libraries at varying levels of smoothing are available from http://dunbrack.fccc.edu.
引用
收藏
页码:844 / 858
页数:15
相关论文
共 52 条
[1]   ON BANDWIDTH VARIATION IN KERNEL ESTIMATES - A SQUARE ROOT LAW [J].
ABRAMSON, IS .
ANNALS OF STATISTICS, 1982, 10 (04) :1217-1223
[2]   PHENIX:: building new software for automated crystallographic structure determination [J].
Adams, PD ;
Grosse-Kunstleve, RW ;
Hung, LW ;
Ioerger, TR ;
McCoy, AJ ;
Moriarty, NW ;
Read, RJ ;
Sacchettini, JC ;
Sauter, NK ;
Terwilliger, TC .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :1948-1954
[3]   Differentiable, multi-dimensional, knowledge-based energy terms for torsion angle probabilities and propensities [J].
Amir, El-Ad David ;
Kalisman, Nir ;
Keasar, Chen .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 72 (01) :62-73
[4]   FireDock: Fast interaction refinement in molecular docking [J].
Andrusier, Nelly ;
Nussinov, Ruth ;
Wolfson, Haim J. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 69 (01) :139-159
[5]   Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: A new homology modeling tool [J].
Bower, MJ ;
Cohen, FE ;
Dunbrack, RL .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 267 (05) :1268-1282
[6]   Toward high-resolution de novo structure prediction for small proteins [J].
Bradley, P ;
Misura, KMS ;
Baker, D .
SCIENCE, 2005, 309 (5742) :1868-1871
[7]   VARIABLE KERNEL ESTIMATES OF MULTIVARIATE DENSITIES [J].
BREIMAN, L ;
MEISEL, W ;
PURCELL, E .
TECHNOMETRICS, 1977, 19 (02) :135-144
[8]   LOCALLY ADAPTIVE BANDWIDTH CHOICE FOR KERNEL REGRESSION-ESTIMATORS [J].
BROCKMANN, M ;
GASSER, T ;
HERRMANN, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (424) :1302-1309
[9]   Computational design and characterization of a monomeric helical dinuclear metalloprotein [J].
Calhoun, JR ;
Kono, H ;
Lahr, S ;
Wang, W ;
DeGrado, WF ;
Saven, JG .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 334 (05) :1101-1115
[10]   A graph-theory algorithm for rapid protein side-chain prediction [J].
Canutescu, AA ;
Shelenkov, AA ;
Dunbrack, RL .
PROTEIN SCIENCE, 2003, 12 (09) :2001-2014