ITEA-interactive trajectories and events analysis: exploring sequences of spatio-temporal events in movement data

被引:2
作者
Cibulski, Lena [1 ,3 ]
Gracanin, Denis [4 ]
Diehl, Alexandra [5 ,6 ]
Splechtna, Rainer [1 ]
Elshehaly, Mai [7 ]
Delrieux, Claudio [8 ]
Matkovic, Kresimir [2 ]
机构
[1] VRVis Res Ctr, Vienna, Austria
[2] VRVis Res Ctr, Interact Visualizat Grp, Vienna, Austria
[3] Univ Magdeburg, Magdeburg, Germany
[4] Virginia Tech, Dept Comp Sci, Blacksburg, VA USA
[5] Univ Buenos Aires, Course Algorithms & Data Struct 1, Fac Exact & Nat Sci, Buenos Aires, DF, Argentina
[6] Univ Buenos Aires, Course Informat Visualizat, Buenos Aires, DF, Argentina
[7] Univ Maryland, Baltimore, MD 21201 USA
[8] Univ South, Bahia Blanca, Buenos Aires, Argentina
关键词
Interactive visual analysis; Movement data; Spatio-temporal data; Coordinated multiple views; ANALYTICS;
D O I
10.1007/s00371-016-1255-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Widespread use of GPS and similar technologies makes it possible to collect extensive amounts of trajectory data. These data sets are essential for reasonable decision making in various application domains. Additional information, such as events taking place along a trajectory, makes data analysis challenging, due to data size and complexity. We present an integrated solution for interactive visual analysis and exploration of events along trajectories data. Our approach supports analysis of event sequences at three different levels of abstraction, namely spatial, temporal, and events themselves. Customized views as well as standard views are combined to form a coordinated multiple views system. In addition to trajectories and events, we include on-the-fly derived data in the analysis. We evaluate our integrated solution using the IEEE VAST 2015 Challenge data set. A successful detection and characterization of malicious activity indicate the usefulness and efficiency of the presented approach.
引用
收藏
页码:847 / 857
页数:11
相关论文
共 32 条
[21]   A Hybrid Approach Combining the Multi-Temporal Scale Spatio-Temporal Network with the Continuous Triangular Model for Exploring Dynamic Interactions in Movement Data: A Case Study of Football [J].
Zhang, Pengdong ;
Beernaerts, Jasper ;
Van de Weghe, Nico .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (01)
[22]   TPFIow: Progressive Partition and Multidimensional Pattern Extraction for Large-Scale Spatio-Temporal Data Analysis [J].
Liu, Dongyu ;
Xu, Panpan ;
Ren, Liu .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (01) :1-11
[23]   Spatio-temporal data analysis of Internet of Vehicles: from scene information collection to remote analysis [J].
Lang, Weiwei .
2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, :630-636
[24]   Data-Driven Approaches for Spatio-Temporal Analysis: A Survey of the State-of-the-Arts [J].
Das, Monidipa ;
Ghosh, Soumya K. .
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2020, 35 (03) :665-696
[25]   Singular Spectrum Analysis for Background Initialization with Spatio-Temporal RGB Color Channel Data [J].
Le, Huy D. ;
Le, Tuyen Ngoc ;
Wang, Jing-Wein ;
Liang, Yu-Shan .
ENTROPY, 2021, 23 (12)
[26]   Data-Driven Approaches for Spatio-Temporal Analysis: A Survey of the State-of-the-Arts [J].
Monidipa Das ;
Soumya K. Ghosh .
Journal of Computer Science and Technology, 2020, 35 :665-696
[27]   Multi-source and heterogeneous marine hydrometeorology spatio-temporal data analysis with machine learning: a survey [J].
Wu, Song ;
Li, Xiaoyong ;
Dong, Wei ;
Wang, Senzhang ;
Zhang, Xiaojiang ;
Xu, Zichen .
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (03) :1115-1156
[28]   SPLORT: Evaluation of a Web-based Approach for Descriptive and Exploratory Analysis of Multivariate Spatio-temporal Data [J].
Feijoo-Garcia, Miguel Alfonso ;
Hernandez-Penalosa, Jose Tiberio .
14TH INTERNATIONAL SYMPOSIUM ON VISUAL INFORMATION COMMUNICATION AND INTERACTION, VINCI 2021, 2021,
[29]   Multi-source and heterogeneous marine hydrometeorology spatio-temporal data analysis with machine learning: a survey [J].
Song Wu ;
Xiaoyong Li ;
Wei Dong ;
Senzhang Wang ;
Xiaojiang Zhang ;
Zichen Xu .
World Wide Web, 2023, 26 :1115-1156
[30]   SDSAM: a service-oriented approach for descriptive statistical analysis of multidimensional spatio-temporal big data [J].
Ding, Weilong ;
Zhao, Zhuofeng ;
Zhou, Jie ;
Li, Han .
INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2025, 16 (04) :338-348