Subspace Clustering by Block Diagonal Representation

被引:364
作者
Lu, Canyi [1 ]
Feng, Jiashi [1 ]
Lin, Zhouchen [2 ,3 ]
Mei, Tao [4 ]
Yan, Shuicheng [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119077, Singapore
[2] Peking Univ, Sch EECS, Key Lab Machine Percept MOE, Beijing 100871, Peoples R China
[3] Shanghai Jiao Tong Univ, Cooperat Medianet Innovat Ctr, Shanghai 200240, Peoples R China
[4] Microsoft Res Asia, Beijing 100080, Peoples R China
关键词
Subspace clustering; spectral clustering; block diagonal regularizer; block diagonal representation; nonconvex optimization; convergence analysis; GENERAL FRAMEWORK; SEGMENTATION; GRAPH;
D O I
10.1109/TPAMI.2018.2794348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies the subspace clustering problem. Given some data points approximately drawn from a union of subspaces, the goal is to group these data points into their underlying subspaces. Many subspace clustering methods have been proposed and among which sparse subspace clustering and low-rank representation are two representative ones. Despite the different motivations, we observe that many existing methods own the common block diagonal property, which possibly leads to correct clustering, yet with their proofs given case by case. In this work, we consider a general formulation and provide a unified theoretical guarantee of the block diagonal property. The block diagonal property of many existing methods falls into our special case. Second, we observe that many existing methods approximate the block diagonal representation matrix by using different structure priors, e.g., sparsity and low-rankness, which are indirect. We propose the first block diagonal matrix induced regularizer for directly pursuing the block diagonal matrix. With this regularizer, we solve the subspace clustering problem by Block Diagonal Representation (BDR), which uses the block diagonal structure prior. The BDR model is nonconvex and we propose an alternating minimization solver and prove its convergence. Experiments on real datasets demonstrate the effectiveness of BDR.
引用
收藏
页码:487 / 501
页数:15
相关论文
共 43 条
[1]   Identification of switched linear systems via sparse optimization [J].
Bako, Laurent .
AUTOMATICA, 2011, 47 (04) :668-677
[2]   Lambertian reflectance and linear subspaces [J].
Basri, R ;
Jacobs, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (02) :218-233
[3]   k-plane clustering [J].
Bradley, PS ;
Mangasarian, OL .
JOURNAL OF GLOBAL OPTIMIZATION, 2000, 16 (01) :23-32
[4]  
Brox T, 2010, LECT NOTES COMPUT SC, V6315, P282, DOI 10.1007/978-3-642-15555-0_21
[5]   Spectral Curvature Clustering (SCC) [J].
Chen, Guangliang ;
Lerman, Gilad .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 81 (03) :317-330
[6]   A multibody factorization method for independently moving objects [J].
Costeira, JP ;
Kanade, T .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 29 (03) :159-179
[7]  
Dattorro J., 2016, CONVEX OPTIMIZATION
[8]   Sparse Subspace Clustering: Algorithm, Theory, and Applications [J].
Elhamifar, Ehsan ;
Vidal, Rene .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2765-2781
[9]   Robust Subspace Segmentation with Block-diagonal Prior [J].
Feng, Jiashi ;
Lin, Zhouchen ;
Xu, Huan ;
Yan, Shuicheng .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3818-3825
[10]   Multibody grouping from motion images [J].
Gear, CW .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 29 (02) :133-150