(Co)Homology and universal central extension of Hom-Leibniz algebras

被引:37
作者
Cheng, Yong Sheng [1 ,2 ,3 ]
Su, Yu Cai [3 ,4 ]
机构
[1] Henan Univ, Inst Contemporary Math, Kaifeng 475004, Peoples R China
[2] Henan Univ, Coll Math & Informat Sci, Kaifeng 475004, Peoples R China
[3] Univ Sci & Technol China, Wu Wen Tsun Key Lab Math, Hefei 230026, Peoples R China
[4] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Hom-Leibniz algebra; (co)homology theory; central extension; LIE-ALGEBRAS; HOMOLOGY; DEFORMATIONS;
D O I
10.1007/s10114-011-9626-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hom-Leibniz algebra is a natural generalization of Leibniz algebras and Hom-Lie algebras. In this paper, we develop some structure theory (such as (co)homology groups, universal central extensions) of Hom-Leibniz algebras based on some works of Loday and Pirashvili.
引用
收藏
页码:813 / 830
页数:18
相关论文
共 18 条
[1]  
CAMACHO M, 2010, ACTA MATH SIN, V26, P227
[2]   Homology with trivial coefficients and universal central extensions of algebras with bracket [J].
Casas, J. M. .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (08) :2431-2449
[3]   Noncommutative Leibniz-Poisson algebras [J].
Casas, J. M. ;
Datuashvili, T. .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (07) :2507-2530
[4]  
CHENG Y, ALG C IN PRESS
[5]   The second Leibniz homology group for Kac-Moody Lie algebras [J].
Gao, Y .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :25-33
[6]   Leibniz homology of unitary Lie algebras [J].
Gao, Y .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 140 (01) :33-56
[7]   Deformations of Lie algebras using σ-derivations [J].
Hartwig, JT ;
Larsson, D ;
Silvestrov, SD .
JOURNAL OF ALGEBRA, 2006, 295 (02) :314-361
[8]   Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities [J].
Larsson, D ;
Silvestrov, SD .
JOURNAL OF ALGEBRA, 2005, 288 (02) :321-344
[9]  
Liu D., 2005, J ALGEBRA, V283, P199
[10]   On the toroidal Leibniz algebras [J].
Liu, Dong ;
Lin, Lei .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (02) :227-240